精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=alog2(|x|+4)+x2+a2﹣8有唯一的零点,则实数a的值是(
A.﹣4
B.2
C.±2
D.﹣4或2

【答案】B
【解析】解:显然f(x)是偶函数,

∵f(x)有唯一一个零点,∴f(0)=0,即a2+2a﹣8=0,

解得a=2或a=﹣4.

当a=2时,f(x)=2alog2(|x|+4)+x2﹣4,

∴f(x)在[0,+∞)上单调递增,符合题意;

当a=﹣4时,f(x)=﹣4log2(|x|+4)+x2+8,

作出y=4log2(|x|+4)和y=x2+8的函数图象如图所示:

由图象可知f(x)有三个零点,不符合题意;

综上,a=2.

故选B.

根据f(x)是偶函数可知唯一零点比为0,从而得出a,再利用函数图象验证即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)+
(I)讨论函数f(x)在(0,+∞)上的单调性;
(II)设函数f(x)存在两个极值点,并记作x1 , x2 , 若f(x1)+f(x2)>4,求正数a的取值范围;
(III)求证:当a=1时,f(x)> (其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于70为合格品,小于70为次品.现随机抽取这种芯片共120件进行检测,检测结果统计如表:

测试指标

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片数量(件)

8

22

45

37

8

已知生产一件芯片,若是合格品可盈利400元,若是次品则亏损50元.
(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产3件芯片所获得的利润不少于700元的概率.
(Ⅱ)记ξ为生产4件芯片所得的总利润,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为 ,甲、乙两家公司对每题的回答都是相独立,互不影响的.
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(m,cos2x), =(sin2x,n),设函数f(x)= ,且y=f(x)的图象过点( )和点( ,﹣2).
(Ⅰ)求m,n的值;
(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象.若y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

≥5

概率

0.30

0.15

0.20

0.20

0.10

0.05

(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ) 写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ) 过点M(﹣1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案