精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)当时,求函数的极值;

(2)是否存在实数,使得当时,函数的最大值为?若存在,取实数的取值范围,若不存在,请说明理由.

【答案】1见解析2.

【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导函数符号变化规律,确定极值(2)先求函数导数,根据导函数零点情况分类讨论,根据函数取最大值情况研究实数的取值范围:当时,函数先增后减,最大值为;当时,再根据两根大小进行讨论,结合函数图像确定满足题意的限制条件,解出实数的取值范围

试题解析:(1)当时, ,则

化简得,所以函数上单调递增,在上单调递减,

所以函数处取到极小值为,在处取得极大值.

(2)由题意

①当时,函数上单调递增,在上单调递减,此时,不存在实数,使得当时,函数的最大值为

②当时,令

(1)当时,函数上单调递增,显然符合题意.

(2)当时,函数上单调递增,

上单调递减,

此时由题意,只需,解得,又

所以此时实数的取值范围是.

(3)当时,函数上单调递增,

上单调递减,要存在实数,使得当时,函数的最大值为

,代入化简得

,因为恒成立,

故恒有,所以时,所以恒成立,

综上,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

(1)画出散点图并判断是否线性相关;

(2)如果线性相关,求线性回归方程;

(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)求证:当时,对任意都有

(2)若函数有两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制,已知高三学生的原始成绩均分布在发布成绩使用等级制各等级划分标准见表.

原始成绩

85分及以上

70分到84

60分到69

60分以下

等级

优秀

良好

及格

不及格

为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计按照的分组作出频率分布直方图如图所示其中等级为不及格的有5人,优秀的有3人.

1)求和频率分布直方图中的的值

2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若该校高三学生共1000人,求竞赛等级在良好及良好以上的人数;

3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取2名学生进行学习经验介绍,求抽取的2名学生中优秀等级的学生恰好有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长是短轴长的倍,且过点

(1)求椭圆的标准方程;

(2)若的顶点在椭圆上, 所在的直线斜率为 所在的直线斜率为,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)exax1.

1)求f(x)的单调增区间;

2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设,试讨论单调性;

(2)设,当时,任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是双曲线 (a>0,b>0,xy≠0)上的动点,F1,F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=|NF1|=…=a。类似地:P是椭圆 (a>b>0,xy≠0)上的动点,F1,F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且,则|OM|的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为正方形,且底面的平面与侧面的交线为且满足表示的面积.

(1)证明: 平面

(2)当时,二面角的余弦值为的值.

查看答案和解析>>

同步练习册答案