精英家教网 > 高中数学 > 题目详情
已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+1.
(Ⅰ)求f(x)的单调区间;
(2)若x∈[0,
π
2
],f(x)=
11
10
,求cosx值.
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:三角函数的求值
分析:(1)由向量和三角函数的运算可得f(x)=sin(x-
π
6
)+
1
2
,由2kπ-
π
2
≤x-
π
6
≤2kπ+
π
2
解不等式可得单调递增区间,同理可得单调递减区间;
(2)由已知可得sin(x-
π
6
)=
3
5
,进而可得cos(x-
π
6
)=
4
5
,代入cosx=
3
2
cos(x-
π
6
)-
1
2
sin(x-
π
6
)计算可得.
解答: 解:(1)∵
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),
∴f(x)=
m
n
+1=
3
sin
x
2
cos
x
2
-cos2
x
2
+1
=
3
2
sinx-
1
2
cosx+
1
2
=sin(x-
π
6
)+
1
2

由2kπ-
π
2
≤x-
π
6
≤2kπ+
π
2
可得2kπ-
π
3
≤x≤2kπ+
3

∴f(x)的单调递增区间为:[2kπ-
π
3
,2kπ+
3
],k∈Z,
同理可得单调递减区间为:[2kπ+
3
,2kπ+
3
],k∈Z,
(2)由(1)知f(x)=sin(x-
π
6
)+
1
2
=
11
10

∴sin(x-
π
6
)=
3
5
,又∵x∈[0,
π
2
],
∴x-
π
6
∈[-
π
6
π
3
],∴cos(x-
π
6
)=
4
5

∴cosx=cos[(x-
π
6
)+
π
6
]
=
3
2
cos(x-
π
6
)-
1
2
sin(x-
π
6

=
3
2
×
4
5
-
1
2
×
3
5
=
4
3
-3
10
点评:本题考查三角函数的恒等变换,涉及向量的数量积和三角函数的单调性,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论正确的是(  )
A、任何集合都有子集
B、任何集合都有真子集
C、{∅}=∅
D、{0}=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x-2
x+2
)的定义域为[m,n],值域为[Loga(n+1),loga(m+1)]求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为P(0,4),焦点为F(0,
15
4
),直线l与抛物线C交于点M、N两点,且∠MPN=90°
(Ⅰ)求抛物线C的方程;
(Ⅱ)证明直线MN过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax+a-x(a>0,a≠1)且f(1)=
5
2
,则f(0)+f(1)+f(2)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

2cos25°-cos85°
sin25°+
3
cos25°
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l在两坐标轴上截距都为a(a≠0),l过点A(2,3).
(1)求l的方程(结果化为一般式);
(2)若l与x轴、y轴分别交于A、B两点,求△AOB外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长为16cm的线段AB上任取一点M,并以线段AM为一边作正方形,则此正方形的面积介于25cm2与81cm2之间的概率为(  )
A、
5
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-b)
(x-b)2+c
(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(m,n∈R,且mn>0),给出下列命题,①函数f(x)的图象关于点(b,0)成中心对称;②存在实数p和q,使得p≤f(x)≤q对于任意实数x恒成立;③关于x的方程g(x)=0的解集可能为{-4,-2,0,3}其中正确的是(  )
A、①②B、②③C、①③D、①②③

查看答案和解析>>

同步练习册答案