精英家教网 > 高中数学 > 题目详情
12.已知数列{an}中a1=1,关于x的方程x2-an+1•tan(cosx)+(2an+1)•tan1=0有唯一解,设bn=nan,数列{bn}的前n项和为Sn,则S9=(  )
A.8143B.8152C.8146D.8149

分析 设f(x)=x2-an+1•tan(cosx)+(2an+1)•tan1,则f(x)是偶函数,且f(0)=0是其唯一解,从而an+1=2an+1,进而${a}_{n}+1={2}^{n}$,${a}_{n}={2}^{n}-1$,由此bn=nan=n(2n-1)=n•2n-n,利用分组求和法和错位相减法求出${S}_{n}=(n-1)•{2}^{n+1}+2-\frac{n(n+1)}{2}$,由此能求出S9

解答 解:∵数列{an}中a1=1,关于x的方程x2-an+1•tan(cosx)+(2an+1)•tan1=0有唯一解,
∴设f(x)=x2-an+1•tan(cosx)+(2an+1)•tan1,
则f(x)是偶函数,
由题意得f(x)=0有唯一解,
∴f(0)=0是其唯一解,
∴02-an+1•tan1+(2an+1)•tan1=0
an+1=2an+1,
∴an+1+1=2(an+1),a1+1=2,
∴{an+1}是以2为首项,以2为公比的等比数列,
∴${a}_{n}+1={2}^{n}$,${a}_{n}={2}^{n}-1$,
∴bn=nan=n(2n-1)=n•2n-n,
∴Sn=1•2+2•22+3•23+…+n•2n-(1+2+3+…+n)
=1•2+2•22+3•23+…+n•2n-$\frac{n(n+1)}{2}$,①
2Sn=1•22+2•23+3•24+…+n•2n+1-n(n+1),②
①-②,得:-Sn=2+22+23+2n-n•2n+1+$\frac{n(n+1)}{2}$
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1+$\frac{n(n+1)}{2}$
=(1-n)•2n+1-2+$\frac{n(n+1)}{2}$,
∴${S}_{n}=(n-1)•{2}^{n+1}+2-\frac{n(n+1)}{2}$.
∴S9=8×210+2-45=8149.
故选:D.

点评 本题考查数列的前9项和的求法,是中档题,解题时要认真审题,注意函数性质、构造法、分组求和法和错位相减法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.探讨下列各式中,角x分别为何值时,式子失去意义:
(1)tanx+$\frac{1}{sinx}$;
(2)$\frac{\sqrt{tanx}}{sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x+m|.
(1)若不等式f(1)+f(-2)≥5成立,求实数m的取值范围;
(2)当x≠0时,证明:f($\frac{1}{x}$)+f(-x)≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$g(x)=\frac{x+2}{x-6}$,
(1)点(3,14)在函数的图象上吗?;
(2)当x=4时,求g(x)的值;
(3)当g(x)=2时,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.①若f(x)是[-4,4]上的单调增函数,且f(2x-1)<f(x+2),求x的取值范围.
②已知函数f(x)=-x2+|x|,x∈R.将f(x)化成分段函数形式,画出图象并由图象写出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x>0,f(x)<x”的否定形式是(  )
A.?x>0,f(x)≥xB.?x≤0,f(x)≥xC.?x0>0,f(x0)≥x0D.?x0≤0,f(x0)≥x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.圆C的极坐标方程为$ρ=2\sqrt{2}cos(θ+\frac{3}{4}π)$,极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,且长度单位相同,直线l的参数方程为$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).
(1)求C的直角坐标方程及圆心的极坐标
(2)l与C交于A,B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x-1-2sinπx的所有零点之和等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2+$\frac{1}{x}$,f′(x)为f(x)的导函数,则f′(1)的值是1.

查看答案和解析>>

同步练习册答案