分析 (1)令f(x)=x2-ax+a2+2,由题意可得f(2)<0,由此求得实数a的取值范围.
(2)分当a=0时、当a>0时、当a<0时三种情况,分别利用二次函数的性质求得a的范围,再取并集,即得所求.
(3)构造函数,利用f(0)>0,f(1)<0,f(2)>0,建立不等式组,即可得出结论.
解答 解:(1)由于关于x的方程x2-ax+a2+2=0的两个根一个大于2,另一个小于2,
令f(x)=x2-ax+a2+2,
可得f(2)=a2-2a+6<0,无解;
(2)当a=0时,方程即3x=0,求得 x=0,不满足条件.
当a>0时,设f(x)=ax2+3x+4a,则由题意可得$\left\{\begin{array}{l}{△=9-16{a}^{2}≥0}\\{-\frac{3}{2a}<1}\\{f(1)=3+5a>0}\end{array}\right.$,求得0<a≤$\frac{3}{4}$.
当a<0时,设g(x)=ax2+3x+4a,则由题意可得$\left\{\begin{array}{l}{△=9-16{a}^{2}≥0}\\{-\frac{3}{2a}<1}\\{g(1)=3+5a<0}\end{array}\right.$,求得a∈∅.
综上可得,a的范围为(0,$\frac{3}{4}$].
(3)设f(x)=7x2-(a+13)x+a2-a-2,∵x1、x2是方程f(x)=0的两个实根,且0<x1<1,1<x2<2,
∴f(0)>0,f(1)<0,f(2)>0.
∴$\left\{\begin{array}{l}{{a}^{2}-a-2>0}\\{{a}^{2}-2a-8<0}\\{{a}^{2}-3a>0}\end{array}\right.$,
∴-2<a<-1或3<a<4.
∴a的取值范围是{a|-2<a<-1或3<a<4}.
点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 2log23 | B. | 2 | C. | 3 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com