精英家教网 > 高中数学 > 题目详情
2.当关于x的方程的根满足下列条件时,求实数a的取值范围:
(1)方程x2-ax+a2+2=0的两个根一个大于2,另一个小于2;
(2)方程ax2+3x+4a=0的两根都小于1;
(3)方程7x2-(a+13)x+a2-a-2=0的一个根在(0,1)内,另一个根在(1,2)内.

分析 (1)令f(x)=x2-ax+a2+2,由题意可得f(2)<0,由此求得实数a的取值范围.
(2)分当a=0时、当a>0时、当a<0时三种情况,分别利用二次函数的性质求得a的范围,再取并集,即得所求.
(3)构造函数,利用f(0)>0,f(1)<0,f(2)>0,建立不等式组,即可得出结论.

解答 解:(1)由于关于x的方程x2-ax+a2+2=0的两个根一个大于2,另一个小于2,
令f(x)=x2-ax+a2+2,
可得f(2)=a2-2a+6<0,无解;
(2)当a=0时,方程即3x=0,求得 x=0,不满足条件.
当a>0时,设f(x)=ax2+3x+4a,则由题意可得$\left\{\begin{array}{l}{△=9-16{a}^{2}≥0}\\{-\frac{3}{2a}<1}\\{f(1)=3+5a>0}\end{array}\right.$,求得0<a≤$\frac{3}{4}$.
当a<0时,设g(x)=ax2+3x+4a,则由题意可得$\left\{\begin{array}{l}{△=9-16{a}^{2}≥0}\\{-\frac{3}{2a}<1}\\{g(1)=3+5a<0}\end{array}\right.$,求得a∈∅.
综上可得,a的范围为(0,$\frac{3}{4}$].
(3)设f(x)=7x2-(a+13)x+a2-a-2,∵x1、x2是方程f(x)=0的两个实根,且0<x1<1,1<x2<2,
∴f(0)>0,f(1)<0,f(2)>0.
∴$\left\{\begin{array}{l}{{a}^{2}-a-2>0}\\{{a}^{2}-2a-8<0}\\{{a}^{2}-3a>0}\end{array}\right.$,
∴-2<a<-1或3<a<4.
∴a的取值范围是{a|-2<a<-1或3<a<4}.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=(x-1)(ax-b),f(2-x)=f(2+x),g(x)={log_{\frac{b}{a}}}({x^2}-4x+13)$,则函数g(x)的最小值为(  )
A.2log23B.2C.3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于A,B两点,M是直线l与椭圆C的一个公共点,若$\overrightarrow{AM}$=e$\overrightarrow{AB}$,则该椭圆的离心率e=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下面几种说法:
①相等向量的坐标相同;
②平面上一个向量对应于平面上唯一的坐标;
③一个坐标对应于唯一的一个向量;
④平面上一个点与以原点为始点,该点为终点的向量一一对应.
其中正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x>0,y>0,且4x+y=1.
(I)求$\frac{1}{x}+\frac{1}{y}$的最小值;
(2)求log2x+log2y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$(1,\frac{3}{2})$,且离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若椭圆C左顶点为A,动直线l过点P(4,0)且与椭圆C相交于D,E两点(不同于点A),求直线AD与直线AE的斜率之乘积.
(3)在(2)条件下,点D关于x轴的对称点记为F,证明:直线EF过定点,求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=loga(1+x)(a>0且a≠1),x∈(-1,0)时有f(x)>0,
证明:对任意x1>1,x2>1有$\frac{f({x}_{1}-1)+f({x}_{2}-1)}{2}$≥f($\frac{{x}_{1}+{x}_{2}-2}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\sqrt{3}$cos2x+sin2x的最大值和最小正周期分别是π;2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|cos2x=$\frac{1}{2}$},B={x|0<x<π},则集合A∩B元素的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案