精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两名射箭选手最近100次射箭所得环数如下表所示.

甲选手100次射箭所得环数

环数

7

8

9

10

次数

15

24

36

25

乙选手100次射箭所得环数

环数

7

8

9

10

次数

10

20

40

30

以甲、乙两名射箭选手这100次射箭所得环数的频率作为概率,假设这两人的射箭结果相互独立.

1)若甲、乙各射箭一次,所得环数分别为XY,分别求XY的分布列并比较的大小;

2)甲、乙相约进行一次射箭比赛,各射3箭,累计所得环数多者获胜.若乙前两次射箭均得10环,且甲第一次射箭所得环数为9,求甲最终获胜的概率.

【答案】1)分布列见解析;;(2.

【解析】

1)求出甲乙两名射击选手,相应环数的频率,并把频率作为概率,列分布列表,求期望,比较大小即可.

2)分类讨论甲最终获胜的情况下,乙的最后射击环数为7环或8环,再讨论甲后两次射击环数的情况,利用相互独立事件求概率即可.

1X的分布列为

X

7

8

9

10

P

0.15

0.24

0.36

0.25

.

Y的分布列为

Y

7

8

9

10

P

0.1

0.2

0.4

0.3

.

因为,所以.

2)若乙最后一次射箭所得环数为7,则当甲后两次射箭所得环数为9101091010时,甲最终可获胜;

若乙最后一次射箭所得环数为8,则当甲后两次射箭所得环数为1010时,甲最终可获胜.

故甲最终获胜的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求最小的正整数,使得存在一个的数阵满足如下条件: (1)每一个数均属于集合; (2)为数阵中第行中的数组成的集合, 为第列中的数组成的集合,,4026个不同的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次篮球投篮测试中,记分规则如下(满分为分):①每人可投篮次,每投中一次记分;②若连续两次投中加分,连续三次投中加分,连续四次投中加分,以此类推,…,七次都投中加.假设某同学每次投中的概率为,各次投篮相互独立,则:(1)该同学在测试中得分的概率为______;(2)该同学在测试中得分的概率为______..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次数学会议上,任意两位数学家要么是朋友,要么是陌生人在进餐期间,每位数学家在两个大餐厅中的其中一个就餐,每位数学家所在的餐厅中包含偶数个他或她的朋友证明数学家能被分到两个餐厅中的不同分法的数目是2的正整数次幕即形如,其中,是某个正整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为某一整系数多项式的根,则称为“代数数”.否则,称为“超越数”,证明:

(1)可数个可数集的并为可数集;

(2)存在超越数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,是以PF为底边的等腰三角形,PA平行于x轴,点,且点P在直线上运动.记点A的轨迹为C.

1)求C的方程.

2)直线AFC的另一个交点为B,等腰底边的中线与直线的交点为Q,试问的面积是否存在最小值?若存在,求出该值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一堆100粒的石子进行如下操作每次任选石子数大于1的一堆任意分成不空的两堆,直到每堆1(100为止证明

(1)无论如何操作,必有某个时刻存在20堆,其石子总数为60;

(2)可以进行适当地操作使得任何时刻不存在19堆,其石子总数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4位同学在同一天的上午、下午参加身高与体重立定跳远肺活量握力台阶五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测握力,下午不测台阶,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )

A.264B.72C.266D.274

查看答案和解析>>

同步练习册答案