精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数.

1)当时,证明:

2)若函数上存在两个极值点,求实数的取值范围.

【答案】(1)证明见解析;(2)

【解析】

1)将带入解析式,求得导函数,并判断当时函数的单调性,根据函数单调性求得函数在时的最小值,即可证明.

2)先求得导函数,讨论在的不同取值范围内函数的单调情况,根据函数的单调情况判断其极值的个数,即可求得实数的取值范围.

1)证明:,,,

,,,又因为,

所以当,,,,

所以上是单调递减,所以,.

2,因为,所以,,

①当,恒成立,所以上单调递增,没有极值点.

②当,在区间上单调递增,

因为,.

,,

所以上单调递减,没有极值点.

,,所以存在,使

,,,

所以处取得极小值,为极小值点.

综上可知,若函数上存在极值点,则实数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求证:当时,

(Ⅱ)存在,使得成立,求a的取值范围;

(Ⅲ)若恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.

1)将该产品的利润y万元表示为促销费用x万元的函数;

2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车智能辅助驾驶已得到广泛应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车,某种算法(如下图所示)将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为,当车速为(米/秒),且时,通过大数据统计分析得到下表(其中系数随地面湿滑成都等路面情况而变化,.

阶段

0、准备

1、人的反应

2、系统反应

3、制动

时间

距离

1)请写出报警距离(米)与车速(米/秒)之间的函数关系式,并求时,若汽车达到报警距离时人和系统均不采取任何制动措施,仍以此速度行驶,则汽车撞上固定障碍物的最短时间(精确到0.1秒);

2)若要求汽车不论在何种路面情况下行驶,报警距离均小于80米,则汽车的行驶速度应限制在多少米/秒以下?合多少千米/小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意,若数列满足,则称这个数列为“K数列”.

1)已知数列:1是“K数列”,求实数m的取值范围;

2)是否存在首项为-1的无穷等差数列为“K数列”,且其前n项和满足:,若存在,求出的通项公式;若不存在,请说明理由;

3)已知各项均为正整数的等比数列(至少有4项)为“K数列”,数列不是“K数列”,若,是否存在,使为“K数列”?若存在,请求出,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士帕斯卡的著作(1655年)介绍了这个三角形,近年来,国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”,如图.17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”,如图.在杨辉三角中,相邻两行满足关系式:,其 中是行数,.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若,对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位长度得到的图象,若的对称中心为坐标原点,则关于函数有下述四个结论:

的最小正周期为 ②若的最大值为2,则

有两个零点 在区间上单调

其中所有正确结论的标号是(

A.①③④B.①②④C.②④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知向量,设,向量

(1)若,求向量的夹角;

(2)若 对任意实数都成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案