【题目】已知函数,,为自然对数的底数.
(1)当时,证明:,;
(2)若函数在上存在两个极值点,求实数的取值范围.
【答案】(1)证明见解析;(2)
【解析】
(1)将带入解析式,求得导函数,并判断当时函数的单调性,根据函数单调性求得函数在时的最小值,即可证明.
(2)先求得导函数,讨论在的不同取值范围内函数的单调情况,根据函数的单调情况判断其极值的个数,即可求得实数的取值范围.
(1)证明:当时,,则,
当时,,则,又因为,
所以当时,,仅时,,
所以在上是单调递减,所以,即.
(2),因为,所以,,
①当时,恒成立,所以在上单调递增,没有极值点.
②当时,在区间上单调递增,
因为,.
当时,时,
所以在上单调递减,没有极值点.
当时,,所以存在,使
当时,,时,
所以在处取得极小值,为极小值点.
综上可知,若函数在上存在极值点,则实数.
科目:高中数学 来源: 题型:
【题目】经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车智能辅助驾驶已得到广泛应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车,某种算法(如下图所示)将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为、、、,当车速为(米/秒),且时,通过大数据统计分析得到下表(其中系数随地面湿滑成都等路面情况而变化,).
阶段 | 0、准备 | 1、人的反应 | 2、系统反应 | 3、制动 |
时间 | 秒 | 秒 | ||
距离 | 米 | 米 |
(1)请写出报警距离(米)与车速(米/秒)之间的函数关系式,并求时,若汽车达到报警距离时人和系统均不采取任何制动措施,仍以此速度行驶,则汽车撞上固定障碍物的最短时间(精确到0.1秒);
(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于80米,则汽车的行驶速度应限制在多少米/秒以下?合多少千米/小时?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于任意,若数列满足,则称这个数列为“K数列”.
(1)已知数列:1,,是“K数列”,求实数m的取值范围;
(2)是否存在首项为-1的无穷等差数列为“K数列”,且其前n项和满足:,若存在,求出的通项公式;若不存在,请说明理由;
(3)已知各项均为正整数的等比数列(至少有4项)为“K数列”,数列不是“K数列”,若,是否存在,使为“K数列”?若存在,请求出,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士帕斯卡的著作(1655年)介绍了这个三角形,近年来,国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”,如图.17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”,如图.在杨辉三角中,相邻两行满足关系式:,其 中是行数,.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象向右平移个单位长度得到的图象,若的对称中心为坐标原点,则关于函数有下述四个结论:
①的最小正周期为 ②若的最大值为2,则
③在有两个零点 ④在区间上单调
其中所有正确结论的标号是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com