精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,(为自然对数的底数)

(I)若上单调递减,求的最大值;

(Ⅱ)当时,证明:.

【答案】(I)2;(Ⅱ)证明见解析.

【解析】

(Ⅰ)由题意得恒成立,即恒成立,设,则对于恒成立,由,得,然后再验证时成立即可得到所求.(Ⅱ)结合(Ⅰ)可得当时,单调递减,且 故当时,,整理得.然后再证明成立,最后将两不等式相加可得所证不等式.

(Ⅰ)由,得

上单调递减,

恒成立,

恒成立,

,则对于恒成立.

时,,且单调递增,

∴当单调递减;当单调递增.

,即恒成立,

的最大值为2.

(Ⅱ)当时,单调递减,且

时,,即

下面证明

,则

在区间上单调递增,

,故②成立.

由①+②得成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

I)求函数fx)的单调区间;

II)若,求证:时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:

单价x/

18

19

20

21

22

销量y/

61

56

50

48

45

1)求试销天的销量的方差和关于的回归直线方程;

附: .

2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数

⑴若的定义域为,求实数的取值范围;

⑵当,求函数的最小值

⑶是否存在实数,使得函数的定义域为,值域为?若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥中,底面是边长为2的等边三角形,且,点是棱上的动点.

(I)求证:平面平面

(Ⅱ)当线段最小时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线交双曲线两点,过作直线的垂线交双曲线于点.若,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数

(Ⅰ)求不等式的解集;

(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)

1)求频率分布直方图中的的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)

2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数.

查看答案和解析>>

同步练习册答案