精英家教网 > 高中数学 > 题目详情
(2013•资阳二模)已知定义在[1,+∞)上的函数f(x)=
4-|8x-12|,1≤x≤2
1
2
f(
x
2
),x>2
,则(  )
分析:分类讨论:①当1≤x≤
3
2
时,f(x)=8x-8,;当
3
2
<x≤2
时,f(x)=16-8x;②当2<x≤3时,则1<
x
2
3
2
,此时f(x)=
1
2
(8×
x
2
-8)
=
x
22
-4=2x-4;
当3<x≤4时,则
3
2
x
2
≤2
,此时f(x)=
1
2
(16-8×
x
2
)
=8-
x
22
;依此类推:当2n-1≤x≤3•2n-2时,f(x)=
23-n
2n-2-2n-1
(x-2n-1)
=25-2n(x-2n-1),
此时,0≤f(x)≤23-n;当3•2n-2<x≤2n时,f(x)=-25-2n(x-2n),此时,0≤f(x)≤23-n.据此即可判断答案.
解答:解:①当1≤x≤
3
2
时,f(x)=8x-8,此时,0≤f(x)≤4;当
3
2
<x≤2
时,f(x)=16-8x,此时,0≤f(x)<4;
②当2<x≤3时,则1<
x
2
3
2
,此时f(x)=
1
2
(8×
x
2
-8)
=
x
22
-4=2x-4,此时,0≤f(x)≤2;
当3<x≤4时,则
3
2
x
2
≤2
,此时f(x)=
1
2
(16-8×
x
2
)
=8-
x
22
,此时,0≤f(x)<2;
…,
依此类推:当2n-1≤x≤3•2n-2时,f(x)=
23-n
2n-2-2n-1
(x-2n-1)
=25-2n(x-2n-1),
此时,0≤f(x)≤23-n;当3•2n-2<x≤2n时,f(x)=-25-2n(x-2n),此时,0≤f(x)≤23-n
据此可得:函数f(x)的值域为[0,4],故A不正确;当n=1时,f(x)=
1
2
,有且仅有7个不等实数根,不是2×1+4=6个不等实数根,故B不正确;当x∈[2n-1,2n](n∈N*)时,函数f(x)的图象与x轴围成的面积S=
1
2
×(2n-2n-123-n
=2,故C正确;xf(x)>6?f(x)>
6
x
,由f(x)的图象可得到:当x∈[2n-1,2n](n∈N*)时,f(x)≤f(3•2n-2)=23-n=
6
3•2n-2
可得:f(x)≤
6
x
,故D不正确.
综上可知:只有C正确.
故选C.
点评:本题综合考查了分类讨论思想方法、直线方程、函数的单调性、函数的交点与方程的根、如何否定一个命题等基础知识与基本技能,考查了数形结合的方法与能力、类比推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•资阳二模)某部门对当地城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,根据每份调查表得到每个调查对象的幸福指数评分值(百分制).现从收到的调查表中随机抽取20份进行统计,得到右图所示的频率分布表:
幸福指数评分值 频数 频率
[50,60] 1
(60,70] 6
(70,80]
(80,90] 3
(90,100] 2
(Ⅰ)请完成题目中的频率分布表,并补全题目中的频率分布直方图;
(Ⅱ)该部门将邀请被问卷调查的部分居民参加“幸福愿景”的座谈会.在题中抽样统计的这20人中,已知幸福指数评分值在区间(80,100]的5人中有2人被邀请参加座谈,求其中幸福指数评分值在区间(80,90]的仅有1人被邀请的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=
14
AB

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)双曲线y2-4x2=64上一点P到它的一个焦点的距离等于1,则P到它的另一个焦点的距离等于为
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过(1,1)与(
6
2
3
2
)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:
1
|OA|2
+
1
|OB|2
+
2
|OM|2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知全集U={1,2,3,4,5},A={1,2,3},B={3,5},则(?UA)∪B=(  )

查看答案和解析>>

同步练习册答案