精英家教网 > 高中数学 > 题目详情
已知函数f(x)对于任意的x∈R,导函数f′(x)都存在,且满足
1-x
f′(x)
≤0
,则必有(  )
分析:先根据
1-x
f′(x)
≤0
,可得函数f(x)的单调性,从而求出函数f(x)在x=1处取最小值f(1),则f(0)>f(1),f(2)>f(1),根据同向不等式相加可得结论.
解答:解:∵
1-x
f′(x)
≤0

∴当x<1时,f′(x)<0,则函数f(x)在(-∞,1)上单调递减,
当x>1时,f′(x)>0,则函数f(x)在(1,+∞)上单调递增,
即函数f(x)在x=1处取最小值f(1),
∴f(0)>f(1),f(2)>f(1),
则将两式相加得f(0)+f(2)>2f(1).
故选A.
点评:本题考查了导数的运算,利用导数研究函数的单调性.对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.利用导数研究函数问题时,经常会运用分类讨论的数学思想方法.解决本题的关键是根据已知条件合理的构造函数,利用构造的新函数进行解题.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对于一切实数m,n都有f(m+n)=f(m)+f(n)成立,且f(1)=2,则f(-2)=
-4
-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于任意x,y∈R总有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-
23

(1)求证:f(x)是R上的奇函数.
(2)求证f(x)在R上是减函数.
(3)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0
(I)求f(0)的值;
(II)求f(x)的解析式;
(III)设函数g(x)=f(x)+(a-3)x+a,如果函数y=g(x)在区间(-1,1)上有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于任意m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且当x>0时f(x)>1.
(1)求证:函数f(x)在R上为增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于任意的x∈R,都满足f(-x)=f(x),且对任意的a,b∈(-∞,0],当a≠b时,都有
f(a)-f(b)a-b
<0.若f(m+1)<f(2),则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案