精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在长方体ABCDA1B1C1D1,若AB=BCEF分别是AB1BC1的中点,则下列结论中不成立的是(

A.EFBB1垂直B.EF⊥平面BDD1B1

C.EFC1D所成的角为45°D.EF∥平面A1B1C1D1

【答案】C

【解析】

A1B,则A1BAB1E,可证EFA1C1,再由长方体的垂直关系,可判断A正确;由已知可证A1C1⊥平面BDD1B1,可判断B为正确;EFA1C1EFC1D所成角就是∠A1C1D,∠A1C1D的大小不确定,判断C为错误; EFA1C1,可得D正确.

A1B,则A1BAB1E,又FBC1中点,

可得EFA1C1,由B1B⊥平面A1B1C1D1

可得B1BA1C1,可得B1BEF,故A正确;

EFA1C1A1C1⊥平面BDD1B1

可得EF⊥平面BDD1B1,故B正确;

EFC1D所成角就是∠A1C1D,∵AA1 的长度不确定,

∴∠A1C1D的大小不确定,故C错误;

EF分别是AB1BC1的中点,

EFA1C1,可得EF∥平面A1B1C1D1,故D正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了进行合理定价先进性试销售,其单价(元)与销量(个)相关数据如下表:

(1)已知销量与单价具有线性相关关系,求关于的线性相关方程;

(2)若该新造型糖画每个的成本为元,要使得进入售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)

参考公式:线性回归方程中斜率和截距最小二乘法估计计算公式:

.参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:

车间

数量

50

150

100

(1)求这6件样品中来自,,各车间产品的数量;

(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】篮球运动于1891年起源于美国,它是由美国马萨诸塞州斯普林菲尔德(旧译麻省春田)市基督教青年会()训练学校的体育教师詹姆士·奈史密斯博士()发明.它是以投篮、上篮和扣篮为中心的对抗性体育运动之一,是可以增强体质的一种运动.已知篮球的比赛中,得分规则如下:3分线外侧投入可得3分,3分线内侧投入可得2分,不进得0分.经过多次试验,某人投篮100次,有20个是3分线外侧投入,30个是3分线内侧投入,其余不能入篮,且每次投篮为相互独立事件.

(1)求该人在4次投篮中恰有三次是3分线外侧投入的概率;

(2)求该人在4次投篮中至少有一次是3分线外侧投入的概率;

(3)求该人两次投篮后得分的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,∠DAB=60°AB=2AD=4,将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

1)求证:ABDE

2)若点FBE的中点,求直线AF与平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的图象在点处的切线方程;

(Ⅱ)若,且对任意恒成立,求的最大值;

(Ⅲ)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P在曲线x2+y2=1上运动,过点Px轴的垂线,垂足为Q,动点M满足.

1)求动点M的轨迹方程;

2)点AB在直线xy4=0上,且AB=4,求△MAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)讨论零点的个数;

(3)当时,设恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆Cab0)的右焦点为F,椭圆C上的两点AB关于原点对称,且满足|FB|≤|FA|≤2|FB|,则椭圆C的离心率的取值范围是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案