ÒÑÖª³£Êýa¡Ù0£¬ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬ÇÒan=
Sn
n
+a(n-1)
£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ»
£¨2£©Èôbn=3n+(-1)nan£¬ÇÒÊýÁÐ{bn}Êǵ¥µ÷µÝÔöÊýÁУ¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôa=
1
2
£¬ÊýÁÐ{cn}Âú×㣺cn=
an
an+2011
£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊýk£¬ÊÇ·ñ´æÔÚp£¬q¡ÊN*£¬Ê¹ck=cp•cq£¿Èô´æÔÚ£¬Çóp£¬qµÄÖµ£¨Ö»ÒªÐ´³öÒ»×é¼´¿É£©£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÓÉÒÑÖªÀûÓÃan+1=Sn+1-Sn£¬´úÈëÕûÀí»¯¼òµÃ£ºan+1-an=2a£¨³£Êý£©£¬¿ÉÖ¤
£¨¢ò£©ÓÉ£¨¢ñ£©Öªan=1+2a£¨n-1£©£¬bn=3n+(-1)nan£¬½áºÏbn£¼bn+1£¬¿ÉµÃ£¨-1£©n[1+£¨2n-1£©a]£¼3n¢Ùµ±nÊÇÆæÊý¢Úµ±nÊÇżÊý£¬½áºÏÊýÁеĵ¥µ÷ÐÔ¼°ºã³ÉÁ¢Óë×îÖµµÄÏ໥ת»»¿ÉÇóaµÄ·¶Î§
£¨¢ó£©ÓÉ£¨¢ñ£©¿ÉµÃcn=
n
n+2011
£¬¼ÙÉè Âú×ãck=cpcq£¬´úÈëÕûÀí¿ÉµÃp=
k(q+2011)
q-k
¿ÉÇó
½â´ð£º½â£º£¨¢ñ£©¡ßan=
Sn
n
+a(n-1)

¡àSn=nan-an£¨n-1£©£¬an+1=Sn+1-Sn£¬¡­£¨2·Ö£©
¡àan+1=[£¨n+1£©an+1-a£¨n+1£©n]-[nan-an£¨n-1£©]
»¯¼òµÃ£ºan+1-an=2a£¨³£Êý£©£¬
¡àÊýÁÐ{an}ÊÇÒÔ1ΪÊ×Ï¹«²îΪ2aµÄµÈ²îÊýÁУ»¡­£¨4·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©Öªan=1+2a£¨n-1£©£¬
ÓÖ¡ßbn=3n+(-1)nan£¬bn£¼bn+1£¬
¡à3n+(-1)nan£¼3n+1+(-1)n+1an+1£¬
¡à£¨-1£©n[1+£¨2n-1£©a]£¼3n
¢Ùµ±nÊÇÆæÊýʱ£¬¡ß-[1+£¨2n-1£©a]£¼3n£¬
¡àa£¾-
3n+1
2n-1
£¬n=1£¬3£¬5£¬7£¬¡­
Áîf(n)=-
3n+1
2n-1
£¬
¡àa£¾f£¨n£©max
¡ßf(n+2)-f(n)=-
3n+2+1
2n+3
+
3n+1
2n-1
=
-4(4n-3)3n+4
(2n-1)(2n+3)
£¼0

¡àf£¨1£©£¾f£¨3£©£¾f£¨5£©£¾¡­£¾f£¨n£©£¾¡­£¬ÇÒf£¨1£©=-4£¬
¡àa£¾-4£»¡­£¨7·Ö£©
¢Úµ±nÊÇżÊýʱ£¬
¡ß1+£¨2n-1£©a£¼3n£¬
¡àa£¼
3n-1
2n-1
£¬n=2£¬4£¬6£¬8£¬¡­
Áîg(n)=
3n-1
2n-1
£¬
¡àa£¼g£¨n£©min
¡ßg(n+2)-g(n)=
3n+2-1
2n+3
-
3n-1
2n-1
=
4(4n-3)3n+4
(2n-1)(2n+3)
£¾0

¡àg£¨2£©£¼g£¨4£©£¼g£¨6£©£¼¡­£¼g£¨n£©£¼¡­£¬ÇÒg(2)=
8
3
£¬
¡àa£¼g(2)=
8
3
£»
×ÛÉϿɵãºÊµÊýaµÄÈ¡Öµ·¶Î§ÊÇ(-4£¬
8
3
)
£®¡­£¨10·Ö£©
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬an=n£¬ÓÖ¡ßcn=
n
n+2011
£¬
Éè¶ÔÈÎÒâÕýÕûÊýk£¬¶¼´æÔÚÕýÕûÊýp£¬q£¬Ê¹ck=cpcq£¬
¡à
k
k+2011
=
p
p+2011
q
q+2011
£¬
¡àp=
k(q+2011)
q-k
¡­£¨12·Ö£©
Áîq=k+1£¬Ôòp=k£¨k+2012£©£¨»òq=2k£¬p=2k+2011£©
¡àck=ck£¨k+2012£©•ck+1£¨»òck=c2k+2011•c2k£©¡­£¨16·Ö£©
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÓÉÊýÁеĺÍÓëÏîµÄµÝÍƹ«Ê½Ö¤Ã÷µÈ²îÊýÁУ¬¼°ÀûÓÃÊýÁеĵ¥µ÷ÐÔÇó½âÊýÁеÄ×î´ó£¨×îС£©ÏîµÄÎÊÌâ¼°ºã³ÉÁ¢Óë×îÖµÇó½âµÄÏ໥ת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª³£Êýa¡Ù0£¬ÊýÁÐ{an}Ç°nÏîºÍΪSn£¬ÇÒSn=an2-(a-1)n£®
£¨¢ñ£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ»
£¨¢ò£©Èôan¡Ü2n3-13n2+11n+1¶ÔÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èôa=
1
2
£¬ÊýÁÐ{cn}Âú×㣺cn=
an
an+2012
£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊýk£¬ÊÇ·ñ´æÔÚp£¬q¡ÊN*£¬Ê¹µÃck=cp•cq£¿Èô´æÔÚ£¬Çó³öp£¬qµÄÖµ£¨Ö»ÒªÐ´³öÒ»×é¼´¿É£©£»Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖª³£Êýa¡Ù0£¬ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬ÇÒÊýѧ¹«Ê½£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ»
£¨2£©ÈôÊýѧ¹«Ê½£¬ÇÒÊýÁÐ{bn}Êǵ¥µ÷µÝÔöÊýÁУ¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôÊýѧ¹«Ê½£¬ÊýÁÐ{cn}Âú×㣺Êýѧ¹«Ê½£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊýk£¬ÊÇ·ñ´æÔÚp£¬q¡ÊN*£¬Ê¹ck=cp•cq£¿Èô´æÔÚ£¬Çóp£¬qµÄÖµ£¨Ö»ÒªÐ´³öÒ»×é¼´¿É£©£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄê½­ËÕÊ¡ËÞǨÊÐãôÑôÏØÖÂÔ¶ÖÐѧ¸ßÒ»£¨ÉÏ£©µÚÒ»´Î½ÌѧÖÊÁ¿¼ì²âÊýѧÊÔ¾í£¨°ÂÊý°à£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖª³£Êýa¡Ù0£¬ÊýÁÐ{an}Ç°nÏîºÍΪSn£¬ÇÒ£®
£¨¢ñ£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ»
£¨¢ò£©Èô¶ÔÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èô£¬ÊýÁÐ{cn}Âú×㣺£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊýk£¬ÊÇ·ñ´æÔÚp£¬q¡ÊN*£¬Ê¹µÃck=cp•cq£¿Èô´æÔÚ£¬Çó³öp£¬qµÄÖµ£¨Ö»ÒªÐ´³öÒ»×é¼´¿É£©£»Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄê½­ËÕÊ¡ÐìÖÝÊÐÚüÖÝÊÐÔ˺ÓÖÐѧ¸ßÈý£¨ÉÏ£©12ÔÂѧÇéµ÷ÑÐÊýѧÊÔ¾í£¨1£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖª³£Êýa¡Ù0£¬ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬ÇÒ£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ»
£¨2£©Èô£¬ÇÒÊýÁÐ{bn}Êǵ¥µ÷µÝÔöÊýÁУ¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©Èô£¬ÊýÁÐ{cn}Âú×㣺£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊýk£¬ÊÇ·ñ´æÔÚp£¬q¡ÊN*£¬Ê¹ck=cp•cq£¿Èô´æÔÚ£¬Çóp£¬qµÄÖµ£¨Ö»ÒªÐ´³öÒ»×é¼´¿É£©£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸