精英家教网 > 高中数学 > 题目详情

若函数f(x)是定义在R上的偶函数,在﹙-∞,0〕上是减函数,且f(3)=0,则使f(x)<0的x的取值范围是


  1. A.
    ﹙-∞,3﹚
  2. B.
    ﹙-3,3﹚
  3. C.
    ﹙-∞,-3﹚∪﹙3,+∞﹚
  4. D.
    ﹙3,+∞﹚
B
分析:根据函数f(x)是定义在R上的偶函数,在﹙-∞,0〕上是减函数,可得函数f(x)在(0,+∞)上单调增,由f(3)=0,f(x)<0,可得f(|x|)<f(3),从而可求x的取值范围.
解答:∵函数f(x)是定义在R上的偶函数,在﹙-∞,0〕上是减函数,
∴函数f(x)在(0,+∞)上单调增
∵f(3)=0,f(x)<0
∴f(|x|)<f(3)
∴|x|<3
∴-3<x<3
∴使f(x)<0的x的取值范围是﹙-3,3﹚
故选B.
点评:本题主要考查函数的奇偶性与单调性的综合运用,考查学生的转化能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(-3)=0,则使得x[f(x)+f(-x)]<0的x的取值范围是
(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)≤2f(4)的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-x+1,则x<0时,f(x)的表达式是
f(x)=-x2-x-1,(x<0)
f(x)=-x2-x-1,(x<0)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的奇函数,在(-∞,0)上为减函数,且f(2)=0,则使得f(x)<0的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的偶函数,在(-∞,0]上是增函数,则使得f(x)<f(2)的x取值范围是
x>2或x<-2
x>2或x<-2

查看答案和解析>>

同步练习册答案