精英家教网 > 高中数学 > 题目详情

若f(x)是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则(x-1)f(x)<0的解是


  1. A.
    (-3,0)∪(1,+∞)
  2. B.
    (-3,0)∪(0,3)
  3. C.
    (-∞,-3)∪(3,+∞)
  4. D.
    (-3,0)∪(1,3)
D
分析:把不等式(x-1)•f(x)<0转化为f(x)>0或f(x)<0的问题解决,根据f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,把函数值不等式转化为自变量不等式,求得结果.
解答:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,
∴在(-∞,0)内f(x)也是增函数,
又∵f(-3)=0,∴f(3)=0
∴当x∈(-∞,-3)∪(0,3)时,f(x)<0;
当x∈(-3,0)∪(3,+∞)时,f(x)>0;
∵(x-1)•f(x)<0

解可得-3<x<0或1<x<3
∴不等式的解集是(-3,0)∪(1,3)
故选D.
点评:本题主要考查函数的奇偶性和单调性,考查解不等式,体现了分类讨论的思想方法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)是奇函数,且在(0,+∞)上是增函数,且f(-3)=0,则x•f(x)<0的解是(  )
A、(-3,0)∪(3,+∞)B、(-∞,-3)∪(0,3)C、(-∞,-3)∪(3,+∞)D、(-3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①ambn=(ab)m+n
②若f(x)是奇函数,则f(x-1)的图象关于点A(1,0)对称;
③a<0是方程ax2+2x+1=0有一个负实数根的充分不必要条件;
④设有四个函数y=x-1,y=x3,y=x
1
2
,y=x4
,其中y随x增大而增大的函数有3个.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则(x-1)f(x)<0的解是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1,
 x<0 
g(x)
 ,       x>0 
,若f(x)是奇函数,则g(2)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•成都模拟)已知函数f(x)的定义域为R,且f(x)不为常函数,有以下命题:
①函数g(x)=f(x)+f(-x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对任意x∈R都有f(x)+f(2+x)=0,则f(x)的图象关于直线x=1对称;
④对任意x1,x2∈R且x1≠x2,若
f(x1)-f(x2)x1-x2
>0
恒成立,则f(x)为(-∞,+∞)上的增函数.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

同步练习册答案