精英家教网 > 高中数学 > 题目详情
5.在△ABC中,D,E,F分别为BC,CA,AB的中点,则$\overrightarrow{AD}$+$\overrightarrow{BE}$+$\overrightarrow{CF}$=$\overrightarrow{0}$.

分析 利用向量的平行四边形法则、中线向量表示即可得出.

解答 解:如图所示,
∵D,E,F分别为BC,CA,AB的中点,
∴$\overrightarrow{AD}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{BE}$=$\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BC})$,$\overrightarrow{CF}$=$\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$.
∴$\overrightarrow{AD}$+$\overrightarrow{BE}$+$\overrightarrow{CF}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$+$\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BC})$+$\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$=$\overrightarrow{0}$.
故答案为:$\overrightarrow{0}$.

点评 本题考查了向量的平行四边形法则、中线向量表示,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若A={x|x2+5x-6=0},B={x|ax+1=0},若B⊆A,则a=0,或-1,或$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A={奇数},B={偶数},x=4k+1,y=4k+2,z=4k+3(k∈Z),则x,x+y,x-y,x+z,x-z,y+z,y-z中,属于集合A的元素是x,x+y,x-y,y+z,y-z;属于集合B的元素是x+z,x-z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若BC=2,sinA=$\frac{2\sqrt{2}}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{4}{5}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$的终点与向量$\overrightarrow{b}$的起点重合,向量$\overrightarrow{c}$的起点与向量$\overrightarrow{b}$的终点重合,则下列结论中,正确的个数为(  )
①以$\overrightarrow{a}$的起点为终点,以$\overrightarrow{c}$的起点为起点的向量为-($\overrightarrow{a}+\overrightarrow{b}$)
②以$\overrightarrow{a}$的起点为终点,以$\overrightarrow{c}$的终点为起点的向量为-$\overrightarrow{a}-\overrightarrow{b}-\overrightarrow{c}$
③以$\overrightarrow{b}$的起点为终点,以$\overrightarrow{c}$的终点为起点的向量为-$\overrightarrow{b}-\overrightarrow{c}$.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某市为了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(Ⅰ)求这次铅球测试成绩合格的人数;
(Ⅱ)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记X表示两人中成绩不合格的人数,求X的分布列及数学期望;
(Ⅲ)经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上以2为周期的偶函数,且当0≤x≤1时,f(x)=log${\;}_{\frac{1}{2}}$(1-x),则f(-$\frac{2015}{4}$)=log${\;}_{\frac{1}{2}}$$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.分解因式4x4+1得(2x2+2x+1)(2x2-2x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列命题:
①若两个向量相等,它们的起点相同,则终点相同;
②若$\overrightarrow{AB}=\overrightarrow{DC}$,则ABCD为平行四边形;
③若向量$\overrightarrow{a}$与$\overrightarrow{b}$同向,且|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$;
④非零向量$\overrightarrow{a}$与$\overrightarrow{b}$同向是$\overrightarrow{a}$=$\overrightarrow{b}$的必要不充分条件;
⑤λ,μ为实数,若λ$\overrightarrow{a}$=μ$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$共线.
其中错误的命题的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案