精英家教网 > 高中数学 > 题目详情

已知函数满足,其中a>0,a≠1.
(1)对于函数,当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2)时,的值为负数,求的取值范围。

(1)
(2)

解析试题分析:解:设,则,所以,
时,是增函数,是减函数且,所以是增函数,
同理,当时,也是增函数

得:
所以,解得:
(2)因为是增函数,所以时,,所以

解得:
考点:函数单调性的运用
点评:主要是考查了函数单调性,以及函数的性质的综合运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数满足:),
(1)用反证法证明:不可能为正比例函数;
(2)若,求的值,并用数学归纳法证明:对任意的,均有:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)当时,求的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(
证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求
(2)判断的奇偶性;
(3)判断上的单调性,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,证明:对
(2)若,且存在单调递减区间,求的取值范围;
(3)数列,若存在常数,都有,则称数列有上界。已知,试判断数列是否有上界.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(Ⅰ)若的值;
(Ⅱ)求函数的最大值和单调递增区间。

查看答案和解析>>

同步练习册答案