精英家教网 > 高中数学 > 题目详情

已知,且求证:中至少有一个是负数。

反证法来证明正难则反的运用,先否定结论假设都是非负数,然后推出矛盾来得到证明。

解析试题分析:明:假设都是非负数
因为
所以

所以
这与已知矛盾。
所以中至少有一个是负数。
考点:反证法
点评:主要是考查了反证法来证明的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源:2014届河南省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

已知,且求证:中至少有一个是负数。

 

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古赤峰市高二下学期期末考试文科数学试卷(解析版) 题型:解答题

已知均为实数,且

求证:中至少有一个大于0

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省泉州市高二下学期期中文科数学试卷(解析版) 题型:解答题

(1)若,求证:

(2)已知,且, 求证:中至少有一个小于2.

【解析】第一问利用均值不等式,可知

第二问中,

证明:(1)

(2)

 

查看答案和解析>>

科目:高中数学 来源:2013届山西大学附中高二第二学期期中考试理科数学试卷(解析版) 题型:解答题

已知均为实数,且.

 求证:中至少有一个大于0.

 

查看答案和解析>>

同步练习册答案