精英家教网 > 高中数学 > 题目详情
4.设(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0,a1,a2成等差数列.
(1)求(x+2)n展开式的中间项;
(2)求(x+2)n展开式所有含x奇次幂的系数和.

分析 (1)利用通项公式及其a0,a1,a2成等差数列.可得n.进而得出.
(2)在${(x+2)^8}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_8}{x^8}$中,分别令令x=1,x=-1,即可得出.

解答 解:(1)${T_{r+1}}=C_n^r{2^{n-r}}{x^r}$,∴${a_0}={2^n},{a_1}=n×{2^{n-1}},{a_2}=\frac{n(n-1)}{2}×{2^{n-2}}$,(2分)
∵a0,a1,a2成等差数列,∴$2n×{2^{n-1}}={2^n}+\frac{n(n-1)}{2}×{2^{n-2}}⇒{n^2}-9n+8=0$(4分)
解得:n=8或n=1(舍去)
∴(x+2)n展开式的中间项是${T_5}=C_8^4{2^{8-4}}{x^4}=1120{x^4}$.(6分)
(2)在${(x+2)^8}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_8}{x^8}$中,
令x=1,则38=a0+a1+a2+a3+…+a7+a8(8分)
令x=-1,则1=a0-a1+a2-a3+…-a7+a8(10分)
两式相减得:$2({a_1}+{a_3}+{a_5}+{a_7})={3^8}-1$
∴${a_1}+{a_3}+{a_5}+{a_7}=\frac{{{3^8}-1}}{2}=3280$.(12分)

点评 本题考查了二项式定理的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,对任意x∈|[-2,2],f(x)的最大值与最小值之和为g(a),求g(a)的表达式;
(2)若a,b,c为正整数,函数f(x)在(-$\frac{1}{4}$,$\frac{1}{4}$)上有两个不同零点,求a+b+c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列结论:
①命题“?x∈R,x2+x≥0”的否定是“?x∈R,x2+x<0”;
②命题“若x2+2x+q=0有不等实根,则q<1”的逆否命题是真命题;
③命题“平行四边形的对角线互相平分”的否命题是真命题;
④命题$p:?x∈R,{x^2}-x+\frac{1}{2}<0$;命题q:设A,B,C为△ABC的三个内角,若A<B,则sinA<sinB.命题p∨q为假命题.
其中,正确结论的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=loga(x2-3ax)对任意的x1,x2∈[$\frac{1}{2}$,+∞),x1≠x2时都满足$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,则实数a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{3}$]C.(0,$\frac{1}{6}$)D.($\frac{1}{6}$,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知方程$\frac{x^2}{2-k}+\frac{y^2}{k-1}=1$表示的图形是(1)椭圆;(2)双曲线;分别求出k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有四个游戏盒,将它们水平放稳后,在上面仍一粒玻璃珠,若玻璃珠落在阴影部分,则可中奖,则中奖机会大的游戏盘是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解甲、乙两校高二年级学生某次联考物理成绩情况,从这两学校中分别随机抽取30名高二年级的物理成绩(百分制)作为样本,样本数据的茎叶图如图所示:

(1)若甲校高二年级每位学生被抽取的概率为0.15,求甲校高二年级学生总人数;
(2)根据茎叶图,对甲、乙两校高二年级学生的物理成绩进行比较,写出两个统计结论(不要求计算);
(3)从样本中甲、乙两校高二年级学生物理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若向量$\overrightarrow{OA}$=(0,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{0}$,则|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个学校共有2000名学生,含初一、初二、初三、高一、高二、高三六个年级,要采用分层抽样方法从全部学生中抽取一个容量为50的样本,已知高一有600名学生,那么从高一年级抽取的学生人数是15人.

查看答案和解析>>

同步练习册答案