精英家教网 > 高中数学 > 题目详情
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有an=2-2.

(1)写出数列{an}的三项;

(2)求数列{an}的通项公式,并写出推证过程;

(3)令bn=,求数列{bn}的前n项和Tn.

解析:(1)由题意,当n=1时,有a1=2-2,S1=a1

∴a1=2-2,解得a1=2.

当n=2时,有a2=2-2,S2=a1+a2,

将a1=2代入,整理得(a2-2)2=16,

由a2>0,解得a2=6.

当n=3时,有a3=2-2,S3=a1+a2+a3,

将a1=2,a2=6代入,整理得(a3-2)2=64,

由a3>0,解得a3=10.

所以该数列的前三项分别为2,6,10.

(2)由an=2-2(n∈N*),整理得Sn=(an+2)2,

则Sn+1=(an+1+2)2,

∴an+1=Sn+1-Sn=[(an+1+2)2-(an+2)2].

整理,得(an+1+an)(an+1-an-4)=0,

由题意知an+1+an≠0,∴an+1-an=4.

∴即数列{an}为等差数列,其中首项a1=2,公差d=4,

∴an=a1+(n-1)d=2+4(n-1).

即通项公式为an=4n-2(n∈N*).

(3)bn=,

Tn=b1+b2+…+bn

=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)令bn=
1
2
(
an+1
an
+
an
an+1
)(n∈N)
,求
lim
n→∞
(b1+b2+…+bn-n)

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有4Sn=(an+1)2
(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求{bn}的前20项和T20

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,都有8Sn=(an+2)2
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)设bn=
4
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N+都成立的最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•东城区二模)设{an}是正数组成的等比数列,a1+a2=1,a3+a4=4,则a4+a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an } 是正数组成的数列,其前n项和为Sn,,所有的正整数n,满足
an+2
2
=
2S n

(1)求a1、a2、a3;    
(2)猜想数列{an }的通项公式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案