【题目】如图,边长为4的正方形所在平面与正三角形所在平面互相垂直,,分别为,的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,四边形是边长为2的正方形.平面,且.
(1)求证:平面平面.
(2)线段上是否存在一点,使三棱锥的高若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON进行分流,已知穿城公路MON自西向东到达城市中心点O后转向东北方向(即).现准备修建一条城市高架道路L,L在MO上设一出入口A,在ON上设一出入口B.假设高架道路L在AB部分为直线段,且要求市中心O与AB的距离为10km.
(1)求两站点A,B之间距离的最小值;
(2)公路MO段上距离市中心O30km处有一古建筑群C,为保护古建筑群,设立一个以C为圆心,5km为半径的圆形保护区.则如何在古建筑群C和市中心O之间设计出入口A,才能使高架道路L及其延伸段不经过保护区(不包括临界状态)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心为原点,左焦点为,离心率为,不与坐标轴垂直的直线与椭圆交于两点.
(1)若为线段的中点,求直线的方程.
(2)求点是直线上一点,点在椭圆上,且满足,设直线与直线的斜率分别为,问:是否为定值?若是,请求出的值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线过点则下列结论正确的是( )
A.点P到抛物线焦点的距离为
B.过点P作过抛物线焦点的直线交抛物线于点Q,则△OPQ的面积为
C.过点P与抛物线相切的直线方程为
D.过点P作两条斜率互为相反数的直线交抛物线于M,N点则直线MN的斜率为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆交于不同的两点,线段的中点为,且直线与直线的斜率之积为.若直线与直线交于点,与直线交于点,且点为直线上一点.
(1)求的轨迹方程;
(2)若为椭圆的上顶点,直线与轴交点,记表示面积,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春季,某出租汽车公同决定更换一批新的小汽车以代替原来报废的出租车,现有A,B两款车型,根据以这往这两种租车车型的数据,得到两款出租车型使用寿命频数表如表:
(1)填写下表,并判断是否有99%的把握认为出租车的使用寿命年数与汽车车型有关?
(2)司机师傅小李准备在一辆开了4年的A型车和一辆开了4年的B型车中选择,为了尽最大可能实现3年内(含3年)不换车,试通过计算说明,他应如何选择.
参考公式:,其中n=a+b+c+d.
参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com