【题目】已知函数,,其中a为常数.
当时,设函数,判断函数在上是增函数还是减函数,并说明理由;
设函数,若函数有且仅有一个零点,求实数a的取值范围.
【答案】(1)见解析;(2),
【解析】
代入a的值,求出的解析式,判断函数的单调性即可;
由题意把函数有且仅有一个零点转化为有且只有1个实数根,通过讨论a的范围,结合二次函数的性质得到关于a的不等式组,解出即可.
(1)由题意,当时,,则,
因为,又由在递减,
所以在递增,
所以根据复合函数的单调性,可得函数在单调递增函数;
由,得,即,
若函数有且只有1个零点,
则方程有且只有1个实数根,
化简得,
即有且只有1个实数根,
时,可化为,即,
此时,满足题意,
当时,由得:
,解得:或,
当即时,方程有且只有1个实数根,
此时,满足题意,
当即时,
若是的零点,则,解得:,
若是的零点,则,解得:,
函数有且只有1个零点,所以或,,
综上,a的范围是,.
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数, .
(1)若函数为奇函数,求实数的值;
(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;
(3)若函数在上是以3为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高一年级共有20个班,为参加全市的钢琴比赛,调查了各班中会弹钢琴的人数,并以组距为5将数据分组成时,作出如下频率分布直方图.
(Ⅰ)由频率分布直方图估计各班中会弹钢琴的人数的平均值;
(Ⅱ)若会弹钢琴的人数为的班级作为第一备选班级,会弹钢琴的人数为的班级作为第二备选班级,现要从这两类备选班级中选出两个班参加市里的钢琴比赛,求这两类备选班级中均有班级被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足 an≤an+1≤3an , n∈N* , a1=1.
(1)若a2=2,a3=x,a4=9,求x的取值范围;
(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an , 若 Sn≤Sn+1≤3Sn , n∈N* , 求q的取值范围.
(3)若a1 , a2 , …ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1 , a2 , …ak的公差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[1,+∞)上的函数f(x)= 给出下列结论: ①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23﹣n;
③存在k∈( , ),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正确命题的序号是( )
A.①②③
B.①③④
C.①②④
D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com