精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的函数,其导函数.

(1)如果函数x=1处有极值试确定b、c的值;

(2)设当时,函数图象上任一点P处的切线斜率为k,若,求实数b的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)求出函数的导数,由题意可得f(1)=,,f′(1)=0,解方程可得b,c,检验是否由极值点;
(2)求得函数y求出导数,由题意可得恒成立,设,求出的最小值,即可得到的范围.

试题解析:

.

(1)因为函数处有极值

所以 ,解得.

(i)当时, ,

所以上单调递减,不存在极值.

(ii)当时, ,

时, 单调递增; 时, 单调递减;

所以处存在极大值,符合题意.

综上所述,满足条件的值为. .

(2)当时,函数,

设图象上任意一点,则

因为,所以对任意 恒成立,

所以对任意,不等式恒成立.

,故在区间上单调递减,

所以对任意 ,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,已知平面

1)求证:

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的方程为 ,⊙C的极坐标方程为ρ=4cosθ+2sinθ.
(1)求直线l和⊙C的普通方程;
(2)若直线l与圆⊙C交于A,B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 表示双曲线命题 表示椭圆

(1)若命题与命题 都为真命题 的什么条件

(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)

(2)若 为假命题 为真命题求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,动点M2t)(.

1)求椭圆的标准方程;

2)求以OM为直径且截直线所得的弦长为2的圆的方程;

3)设F是椭圆的右焦点,过点FOM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆C与x轴相切于点T(2,0),与y轴正半轴相交于两点M,N(点M在点N的下方),且|MN|=3.
(Ⅰ)求圆C的方程;
(Ⅱ)过点M任作一条直线与椭圆 相交于两点A、B,连接AN、BN,求证:∠ANM=∠BNM.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于x 的一元二次方程

(1)是从0,1,2,3,4五个数中任取的一个数,是从0,1,2,3四个数中任取的一个数,求上述方程有实数根的概率;

(2)是从区间中任取的一个实数,是从区间中任取的一个实数,求上述方程有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面底面,且,点分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)写出四棱锥的体积.(只写出结论,不需要说明理由)

查看答案和解析>>

同步练习册答案