精英家教网 > 高中数学 > 题目详情

如果二次函数有两个不同的零点,则的取值范围是(   )

A.                              B.

C.                              D.

 

【答案】

D

【解析】

试题分析:因为二次函数有两个不同的零点,所以,解得,故选D。

考点:本题主要考查二次函数图象,一元二次方程,二次函数零点之间的关系。

点评:典型题,函数图象与x轴交点横坐标,方程的根,函数的零点,说法不同,实际意义相同。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c满足条件:f(2)=f(0)=0,且方程f(x)=x有两个相等实根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[2m,2n]?如果存在,求出m、n的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(2)=0,且方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)求函数在区间[-3,3]上的最大值和最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标高二版(A必修5) 2009-2010学年 第11期 总第167期 人教课标版(A必修5) 题型:013

如果二次函数y=x2+mx+(m+3)有两个不相同的零点,则实数m的取值范围是

[  ]
A.

(-2,6)

B.

[-2,6]

C.

{-2,6}

D.

(-∞,-2)∪(6,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案