精英家教网 > 高中数学 > 题目详情

【题目】某社区组织“学习强国”的知识竞赛,从参加竞赛的市民中抽出40人,将其成绩分成以下6组:第1,第2,第3,第4,第5,第6,得到如图所示的频率分布直方图.现采用分层抽样的方法,从第234组中按分层抽样抽取8人,则第234组抽取的人数依次为(

A.134B.233C.22,4D.116

【答案】C

【解析】

根据频率分布直方图可得第234组中频数之比,结合分层抽样的特点可得人数.

由图可知第234组的频率之比为0.15:0.15:0.3,所以频数之比为1:1:2,

现采用分层抽样的方法,从第234组中按分层抽样抽取8人,所以第234组抽取的人数依次为2,2,4.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线与抛物线交于两点,线段的垂直平分线交轴于点,若,则点的横坐标为( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

一只药用昆虫的产卵数y(单位:个)与一定范围内的温度(单位:℃)有关,现收集了该种药用昆虫的6组观测数据如下表所示.

经计算得

,线性回归模型的残差平方和

,其中分别为观测数据中的温度和产卵数,

(1)若用线性回归模型,求的回归方程(结果精确到0.1).

(2)若用非线性回归模型预测当温度为35℃时,该种药用昆虫的产卵数(结果取整数).

附:一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:

健身族

非健身族

合计

男性

40

10

50

女性

30

20

50

合计

70

30

100

(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?

(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?

参考公式: ,其中.

参考数据:

0. 50

0. 40

0. 25

0. 05

0. 025

0. 010

0. 455

0. 708

1. 321

3. 840

5. 024

6. 635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(I)求出的值;

(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)

已知数列{an}的前n项和为Sn,且a1=1Sn=n2ann∈N*.

1)试求出S1S2S3S4,并猜想Sn的表达式;

2)用数学纳法证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代号

1

2

3

4

5

6

7

销售价格

3

3.4

3.7

4.5

4.9

5.3

6

附:参考公式:,其中为样本平均值。

参考数据:

(1)关于的线性回归方程;

(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(为参数).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线lθα C1C2 各有一个交点.当 α0时,这两个交点间的距离为2,当 α时,这两个交点重合.

(1) 求曲线C1C2的直角坐标方程

(2) 设当 α时,lC1C2的交点分别为A1B1,当 α=-时,lC1C2的交点分别为A2B2,求四边形A1A2B2B1的面积.

查看答案和解析>>

同步练习册答案