精英家教网 > 高中数学 > 题目详情

【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:

分组

频数

频率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合计

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.

【答案】解:(Ⅰ)由频率分布表得:

解得N=200,a=80,b=0.4,c=0.2.

(Ⅱ)由频率分布表得[25,27.5)频率为0.2,

∴d= =0.08.

(Ⅲ)由频率分布表知产品的质量不少于25千克的频率为0.2+0.1=0.3,

∴从该产品中随机抽取一件,

估计这件产品的质量少于25千克的概率p=1﹣0.3=0.7


【解析】(Ⅰ)根据频率= ,由频率分布表能求出表中N及a,b,c的值.(Ⅱ)由频率分布表得[25,27.5)频率为0.2,由此能求出频率分布图中的d的值.(Ⅲ)由频率分布表知产品的质量不少于25千克的频率为0.2+0.1=0.3,从该产品中随机抽取一件,由此能估计这件产品的质量少于25千克的概率.
【考点精析】解答此题的关键在于理解频率分布表的相关知识,掌握第一步,求极差;第二步,决定组距与组数;第三步,确定分点,将数据分组;第四步,列频率分布表,以及对频率分布直方图的理解,了解频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,F1、F2是双曲线 =1(a>0)的左、右焦点,过F1的直线l与双曲线交于点A、B,若△ABF2为等边三角形,则△BF1F2的面积为(
A.8
B.8
C.8
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,A(2,-1),B(4,3),C(3,-2).
(1)求BC边上的高所在直线的一般式方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1= ,an+1=a ﹣an+1,则M= + +…+ 的整数部分是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了对一种新产品进行合理定价,将该产品按亊先拟定的价格进行试销,得到如下数据:

单价x(元)

4

5

6

7

8

9

销量V(件)

90

84

83

80

75

68

由表中数据.求得线性回归方程为 =﹣4x+a.若在这些样本点中任取一点,則它在回归直线右上方的概率为

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,四边形ABCD为矩形,△PAD为等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F分别为PC,BD的中点.
(1)证明:EF∥平面PAD;
(2)证明:直线PA⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同.
(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,1个白球的概率;
(2)采用放回抽样,每次随机取一球,连续取5次,求恰有两次取到红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差数列,求数列{an}的通项公式;
(2)设数列{bn}满足bn= ,且b2= ,证明:b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数a,b满足 + = ,则ab+a+b的最小值为

查看答案和解析>>

同步练习册答案