A规格 | B规格 | C规格 | |
第一种钢板 | 2 | 1 | 1 |
第二种钢板 | 1 | 2 | 4 |
分析 设需要第一种钢板x张,第二种钢板y张,钢板总数为z张,则z=x+y.在由题意得到约束条件,然后作出可行域,化目标函数为直线方程的斜截式,得到最优整解,把最优解的坐标代入目标函数得答案.
解答 解:设需要第一种钢板x张,第二种钢板y张,钢板总数为z张,z=x+y.
约束条件为:$\left\{{\begin{array}{l}{2x+y≥6}\\{x+2y≥6}\\{x+4y≥8}\\{x≥0,y≥0}\end{array}}\right.$,
作出可行域如图所示:
令z=0,作出直线l:y=-x,平行移动直线l,发现在可行域内,经过直线2x+y=6和直线x+2=6的交点A(2,2)可使z取最小zmin=2+2=4.
答:要截得所需三种规格的钢板,截第一种钢板和第二种钢板各自两张,使得所用张数最小,最小值是4张.
点评 本题考查简单的线性规划,考查了简单的数学建模思想方法,考查数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 最小正周期为π | |
B. | 函数y=sin2x向左平移$\frac{π}{12}$个单位可得到f(x) | |
C. | f(x)在区间$(-\frac{π}{3},\frac{π}{6})$上递增 | |
D. | 点$(\frac{π}{6},0)$是f(x)的一个对称中心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1-2$\sqrt{2}$,2] | B. | (-∞,-1-2$\sqrt{2}$]∪[2,+∞) | C. | [-1,2] | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com