精英家教网 > 高中数学 > 题目详情
9.若$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b)=1,则a+b=-3.

分析 $\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b=(1+a)n+(3+b)+$\frac{8n-4}{{n}^{2}-3n+1}$,$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b)=1,可得1+a=0,3+b=1,解出即可.

解答 解:∵$\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b=(1+a)n+(3+b)+$\frac{8n-4}{{n}^{2}-3n+1}$,$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b)=1,
∴1+a=0,3+b=1,
∴a+b=-3.
故答案为:-3.

点评 本题考查了代数式的化简、极限的运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列方程中,以x±2y=0为渐近线的双曲线是(  )
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1C.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,一个四面体木块ABCD,在△ABC的面内有一点P,要经过点P在平面ABC内画一条直线l,使l⊥AD,怎样画?写出作法,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.填空:已知ABCD为一个平行四边形,对角线AC与BD相交于点O,则
$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$;$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{DB}$;
$\overrightarrow{BA}$-$\overrightarrow{BC}$=$\overrightarrow{CA}$;$\overrightarrow{BC}$-$\overrightarrow{BA}$=$\overrightarrow{AC}$;
$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{BA}$;$\overrightarrow{OD}$-$\overrightarrow{OA}$=$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{1}{2}$sinπx的递增区间是[2k-$\frac{1}{2}$,2k+$\frac{1}{2}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不共面的四点可以确定不同的线段数为(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{-1-x,(-1<x<0)}\\{x,(0≤x≤1)}\end{array}\right.$,则f-1($\frac{1}{3}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设x→x0时,|g(x)|≥M(M是一个正的常数),f(x)是无穷大.证明:f(x)g(x)是无穷大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-x2+2ax+1.
(1)若y=f(x)在(1,+∞)上单调递减,求a的取值范围.
(2)若a=1时,y=f(x)在区间[m,n]上的值域为[2m,2n],求m,n的值.
(3)记h(a)为y=f(x)在区间[-4,4]的最小值,求出y=h(a)

查看答案和解析>>

同步练习册答案