精英家教网 > 高中数学 > 题目详情

【题目】给出下列四个命题中:

①函数的一个对称中心为

②若 为第一象限角,且,则

③若,则存在实数,使得

④点是三角形所在平面内一点,且满足,则点是三角形的内心.

其中正确的序号是__________.(把你认为正确的序号都填上)

【答案】①③

【解析】因为,且,所以是函数的一个对称中心,所以①是正确的;

因为,但是,所以②是错误的;

,所以有两个向量是反向的,即是共线向量,所以一定存在实数,使得,故③是正确的,

因为,所以,得。同理可得, ,故是三角形的垂心. 所以是错误的.

点睛:该题属于选择题性质的填空题,考查的知识点比较多,属于较难题目,在解题的过程中,需要对每个命题所涉及的知识点掌握的比较熟练,容易出错的地方是需要把握三角形解的个数的判定方法,以及三角函数在各象限内是不具备单调性的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 中, 的中点, .将沿

折起,使点与图中点重合.

(Ⅰ)求证:

(Ⅱ)当三棱锥的体积取最大时,求二面角的余弦值;

(Ⅲ)在(Ⅱ)的条件下,试问在线段上是否存在一点,使与平面所成的角的正弦值为?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出定义在上的两个函数,.

1处取最值.求的值;

2若函数在区间上单调递减,求实数的取值范围;

3试确定函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知处的切线相同.

1的值及切线的方程;

2设函数,若存在实数使得关于的不等式上的任意实数恒成立,求的最小值及对应的的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与直线相切,椭圆的对称轴为坐标轴,点为坐标原点,是其一个焦点,又点在椭圆上.

(1)求动圆圆心的轨迹的标准方程和椭圆的标准方程;

(2)若过的动直线交椭圆点,交轨迹两点,设的面积,的面积,令的面积,令,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元,每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).

)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;

)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数有相同极值点.

1求函数的最大值;

2求实数的值;

3,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1的单调区间和极值

2上的最小值

3若对恒成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为矩形,侧面底面.

1证明:

2与平面所成的角为,求二面角的余弦值的大小.

查看答案和解析>>

同步练习册答案