精英家教网 > 高中数学 > 题目详情
3.己知函数f(x)=$\sqrt{-{x}^{2}+4x-3}$的定义域为A,函数y=log2(4-x)在区间[2,$\frac{7}{2}$]的值域为B,不等式(x-m)(x-2)≤0的解集为C.
(1)求A、B,A∪B;
(2)若B∩C=[0,n],求m,n.

分析 (1)由-x2+4x-3≥0可解得A=[1,3];由函数的值域的求法可得B=[-1,1];从而求得A∪B=[-1,3];
(2)由B=[-1,1],B∩C=[0,n]可知m=0,从而解得.

解答 解:(1)∵-x2+4x-3≥0,
∴A=[1,3];
∴x∈[2,$\frac{7}{2}$],∴4-x∈[$\frac{1}{2}$,2],
∴log2(4-x)∈[-1,1];
∴B=[-1,1];
A∪B=[-1,3];
(2)∵B=[-1,1],B∩C=[0,n];
∴m=0;
故C=[0,2];
故n=1.

点评 本题考查了函数的定义域与值域的求法及集合的化简与运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.证明函数f(x)=$\frac{2x+1}{x-1}$在(1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点$P(-\sqrt{3},0)$作直线l与圆O:x2+y2=1交于A、B两点,O为坐标原点,设∠AOB=θ,且$θ∈(0,\frac{π}{2})$,当△AOB的面积为$\frac{{\sqrt{3}}}{4}$时,直线l的斜率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x3+bx2+d在区间(0,2)内为减函数,且2是函数的一个零点,则f(1)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是AA1,CC1的中点,试判断四边形BED1F的形状,并计算其面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直线l过A(-a,8)、B(2,2a)两点,且kAB=12,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班50位同学周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中[80,90)的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩在[40,60)的学生中随机选取2人,求这2人成绩分别在[40,50)、[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若sinAsinB十cosAcosB=1,则它是(  )三角形.
A.直角B.等腰C.等腰直角D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在正三棱锥S-ABC中,M,N分别是棱SC、BC的中点,且MN⊥AM,若侧棱SA=$\sqrt{3}$,则正三棱锥S-ABC外接球的表面积是9π.

查看答案和解析>>

同步练习册答案