精英家教网 > 高中数学 > 题目详情

已知过点A(0,2),且方向向量为=(1,k)的直线l与圆C:(x-2)2+(y-3)2=1,相交于M、N两点.

(1)求实数k的取值范围;

(2)若O为坐标原点,且·=12,求k的值.

答案:
解析:

(1) (2)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过点(0,2)的直线与抛物线y2=4x交于不同的两点A(x1,y1),B(x2,y2),计算
1
y1
+
1
y2
的值,由此归纳一条与抛物线有关的性质,使得上述计算结果是性质的一个特例:
过(0,2)的直线与抛物线y2=4x交于不同的两点A(x1,y1),B(x2,y2),则
 

过(0,2)的直线与抛物线y2=2px(p>0)交于不同的两点A(x1,y1),B(x2,y2),则
 

过(0,b)的直线与抛物线y2=mx(m≠0)交于不同的两点A(x1,y1),B(x2,y2),则
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的两焦点分别为F1(-2
2
,0)、F2(2
2
,0),长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点(0,2)的直线与抛物线y2=4x交于不同的两点A(x1,y1),B(x2,y2),计算
1
y1
+
1
y2
的值,由此归纳一条与抛物线有关的性质,使得上述计算结果是性质的一个特例:
根据回答的层次给分
过(0,2)的直线与抛物线y2=4x交与不同的两点A(x1,y1),B(x2,y2),则
1
y1
+
1
y2
=
1
2

过(0,2)的直线与抛物线y2=2px(p>0)交与不同的两点A(x1,y1),B(x2,y2),则
1
y1
+
1
y2
=
1
2

过(0,b)(b≠0)的直线与抛物线y2=mx(m≠0)交与不同的两点A(x1,y1),B(x2,y2),则
1
y1
+
1
y2
=
1
2
根据回答的层次给分
过(0,2)的直线与抛物线y2=4x交与不同的两点A(x1,y1),B(x2,y2),则
1
y1
+
1
y2
=
1
2

过(0,2)的直线与抛物线y2=2px(p>0)交与不同的两点A(x1,y1),B(x2,y2),则
1
y1
+
1
y2
=
1
2

过(0,b)(b≠0)的直线与抛物线y2=mx(m≠0)交与不同的两点A(x1,y1),B(x2,y2),则
1
y1
+
1
y2
=
1
2

(根据回答的层次给分)

查看答案和解析>>

科目:高中数学 来源:2014届湖南邵阳石齐学校高二第三次月考理科数学试卷(解析版) 题型:解答题

(本题满分13分)

已知椭圆C的两焦点分别为,长轴长为6,

⑴求椭圆C的标准方程;

⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。

 

查看答案和解析>>

同步练习册答案