精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的多面体中,四边形都为矩形.

1)若,证明:直线平面

2)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论.

【答案】1)证明见解析;(2)存在,是线段的中点,证明见解析.

【解析】

1)证明出平面,可得出,再结合,然后利用直线与平面垂直的判定定理可证明出直线平面

2)取线段的中点,连接,设的交点,可知的中点,连接,证明出四边形为平行四边形,可得出,然后利用直线与平面平行的判定定理证明出平面,由此可得出当点为线段的中点时,平面.

1)因为四边形都是矩形,所以.

因为为平面内两条相交直线,所以平面.

因为直线平面,所以.

又由已知,为平面内两条相交直线,

所以平面

2)取线段的中点,连接,设的交点.

由已知,的中点.

连接,则分别为的中位线.

所以,因此.

连接,从而四边形为平行四边形,则.

因为直线平面平面

所以直线平面.

即线段上存在一点(线段的中点),使直线平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若样本平均数是4,方差是2,则另一样本的平均数和方差分别为( )

A. 12,2 B. 14,6 C. 12,8 D. 14,18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知椭圆E的中心在原点,长轴长为8,椭圆在X轴上的两个焦点与短轴的一个顶点构成等边三角形.

求椭圆的标准方程;

过椭圆内一点的直线与椭圆E交于不同的A,B两点,交直线于点N,若,求证:为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求曲线在点处的切线方程;

(2)求函数的单调区间;

(3)当时,求函数在上区间零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较注射,两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物,另一组注射药物.下表1和表2分别是注射药物和药物后的实验结果.(疱疹面积单位:

1:注射药物后皮肤疱疹面积的频数分布表

疱疹面积

频数

30

40

20

10

2:注射药物后皮肤疱疹面积的频数分布表

疱疹面积

频数

10

25

20

30

15

(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;

(2)完成下面列联表,并回答能否有99.9%的把握认为注射药物后的疱疹面积与注射药物后的疱疹面积有差异”.

疱疹面积小于

疱疹面积不小于

合计

注射药物

注射药物

合计

附:

0.100

0.050

0.025

0.01

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动更多人阅读,联合国教科文组织确定每年的日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了名居民,经统计这人中通过电子阅读与纸质阅读的人数之比为,将这人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示.

(1)求的值及通过电子阅读的居民的平均年龄;

(2)把年龄在第组的居民称为青少年组,年龄在第组的居民称为中老年组,若选出的人中通过纸质阅读的中老年有人,请完成上面列联表,则是否有的把握认为阅读方式与年龄有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p曲线C1=1表示焦点在x轴上的椭圆,命题q曲线C2表示双曲线

1)若命题p是真命题,求m的取值范围;

2)若pq的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:

1命题,使得,则,都有

2)已知函数f(x)|log2x|abf(a)f(b)ab1

3若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β

4已知定义在上的函数 满足条件 ,且函数 为奇函数,则函数的图象关于点对称

其中真命题的序号为______________.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案