精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2a+1
a
-
1
a2x
,x∈[m,n](m<n).
(1)用函数单调性的定义证明:函数f(x)在[m,n]上单调递增;
(2)f(x)的定义域和值域都是[m,n],求常数a的取值范围.
分析:(1)由?x1、x2∈[m,n],当x1<x2时,f(x1)-f(x2)=-
1
a2
(
1
x1
-
1
x2
)
<0,证明函数f(x)在[m,n]上单调递增
(2)∵f(x)在[m,n]上单调递增,∴f(x)在[m,n]上的值域为[f(m),f(n)],∴f(m)=m且f(n)=n∴f(x)=x有两相异的同号根m、n,利用韦达定理列出所需不等式,即可解得a的取值范围.
解答:解:(1)∵[m,n]⊆(-∞,0)∪(0,+∞)∴m<n<0或0<m<n
对?x1、x2∈[m,n],当x1<x2时,f(x1)-f(x2)=-
1
a2
(
1
x1
-
1
x2
)
=-
1
a2
x1-x2
x1x2

∵m<x1<x2<n,
∴x1x2>0且x2-x1>0,
∴f(x1)<f(x2),
∴f(x)在[m,n]上单调递增.
(2)∵f(x)在[m,n]上单调递增,
∴f(x)在[m,n]上的值域为[f(m),f(n)]
∴f(m)=m且f(n)=n,
∴f(x)=x有两相异的同号根m、n
2a+1
a
-
1
a2x
=x,a2x2-a(2a+1)x+1=0
   需
△=a2(2a+1)2-4a2>0
mn=
1
a2
>0

a>
1
2
a<-
3
2
点评:本题考查了函数单调性的定义及运用,二次方程根的分布问题及解法,解题时要规范步骤,推理严密
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案