精英家教网 > 高中数学 > 题目详情
4.已知t为常数且0<t<1,函数g(x)=$\frac{1}{2}$(x+$\frac{1-t}{x}$)(x>0),h(x)=$\sqrt{{x}^{2}-2x+2+t}$.
(1)求证:g(x)在(0,$\sqrt{1-t}$)上单调递减,在($\sqrt{1-t}$,+∞)上单调递增;
(2)若函数g(x)与h(x)的最小值恰为函数f(x)=x3+ax2+bx(a,b∈R)的两个零点,求a+b的取值范围.

分析 (1)求导g′(x)=$\frac{1}{2}$(1-$\frac{1-t}{{x}^{2}}$)=$\frac{(x+\sqrt{1-t})(x-\sqrt{1-t})}{2{x}^{2}}$,从而判断函数的单调性;
(2)结合(1)知,gmin(x)=g($\sqrt{1-t}$)=$\sqrt{1-t}$>0,h(x)=$\sqrt{{x}^{2}-2x+2+t}$=$\sqrt{(x-1)^{2}+1+t}$≥$\sqrt{1+t}$,从而可得$\sqrt{1-t}$,$\sqrt{1+t}$是方程x2+ax+b=0的两个解,从而利用韦达定理可得$\sqrt{1-t}$+$\sqrt{1+t}$=-a,$\sqrt{1-t}$$\sqrt{1+t}$=b,从而可得a+b=$\sqrt{1-t}$$\sqrt{1+t}$-($\sqrt{1-t}$+$\sqrt{1+t}$),从而解得.

解答 解:(1)证明:∵g(x)=$\frac{1}{2}$(x+$\frac{1-t}{x}$),
∴g′(x)=$\frac{1}{2}$(1-$\frac{1-t}{{x}^{2}}$)=$\frac{(x+\sqrt{1-t})(x-\sqrt{1-t})}{2{x}^{2}}$,
∴当x∈(0,$\sqrt{1-t}$)时,g′(x)<0,
当x∈($\sqrt{1-t}$,+∞)时,g′(x)>0,
∴g(x)在(0,$\sqrt{1-t}$)上单调递减,在($\sqrt{1-t}$,+∞)上单调递增;
(2)结合(1)知,gmin(x)=g($\sqrt{1-t}$)=$\sqrt{1-t}$>0,
h(x)=$\sqrt{{x}^{2}-2x+2+t}$=$\sqrt{(x-1)^{2}+1+t}$≥$\sqrt{1+t}$.
故$\sqrt{1-t}$,$\sqrt{1+t}$是函数f(x)=x3+ax2+bx(a,b∈R)的两个零点,
故$\sqrt{1-t}$,$\sqrt{1+t}$是方程x2+ax+b=0的两个解,
故$\sqrt{1-t}$+$\sqrt{1+t}$=-a,$\sqrt{1-t}$$\sqrt{1+t}$=b,
故a+b=$\sqrt{1-t}$$\sqrt{1+t}$-($\sqrt{1-t}$+$\sqrt{1+t}$)
∵($\sqrt{1-t}$)2+($\sqrt{1+t}$)2=2,且0<t<1,
∴令$\sqrt{1-t}$=$\sqrt{2}$sinθ,则$\sqrt{1+t}$=$\sqrt{2}$cosθ,(0<θ<$\frac{π}{4}$);
a+b=$\sqrt{1-t}$$\sqrt{1+t}$-($\sqrt{1-t}$+$\sqrt{1+t}$)
=2sinθcosθ-$\sqrt{2}$(sinθ+cosθ),
=sin2θ-$\sqrt{2(1+sin2θ)}$,
令sin2θ=x,则0<x<1,
则m(x)=a+b=x-$\sqrt{2(1+x)}$,
m′(x)=1-$\frac{1}{\sqrt{2(1+x)}}$>0,
故m(x)在(0,1)上是增函数;
故m(0)<m(x)<m(1),
即-$\sqrt{2}$<a+b<-1.

点评 本题考查了导数的综合应用及换元法的应用,同时考查了转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.直线l过定点(-1,2)且在两坐标轴上的截距相等,则直线l的方程为(  )
A.2x+y=0或x+y-1=0B.2x-y=0或x+y-1=0
C.2x+y=0或x-y+3=0D.x+y-1=0或x-y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.阅读算法流程图,运行相应的程序,输出的结果为$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线的顶点在坐标原点,焦点是圆(x-3)2+y2=4的圆心,则抛物线的方程是(  )
A.x2=12yB.x2=6yC.y2=12xD.y2=6x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)是“可拆函数”.
(1)函数f(x)=$\frac{k}{x}$是否是“可拆函数”?请说明理由;
(2)若函数f(x)=2x+b+2x是“可拆函数”,求实数b的取值范围:
(3)证明:f(x)=cosx是“可拆函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行下图的程序框图,若输入的a,b,k分别是2,1,3,则输出的M=(  )
A.$\frac{4}{3}$B.$\frac{8}{5}$C.$\frac{15}{4}$D.$\frac{15}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,Q为右支上一点,P点在直线x=-a上,且满足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{2}}$,$\overrightarrow{OQ}$=λ($\frac{\overrightarrow{O{F}_{2}}}{|\overrightarrow{O{F}_{2}}|}$+$\frac{\overrightarrow{OP}}{|\overrightarrow{OP}|}$)(λ≠0),则该双曲线的离心率为(  )
A.$\sqrt{5}$+1B.$\sqrt{2}$+1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆心在原点,半径为4的圆的方程为x2+y2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过原点的两条直线l1和l2分别与C交于点A、B和C、D,得到平行四边形ACBD.
(1)若a=4,b=3,且ACBD为正方形时,求该正方形的面积S;
(2)若直线l1的方程为bx-ay=0,l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,证明:d12+d22=$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$;
(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.

查看答案和解析>>

同步练习册答案