精英家教网 > 高中数学 > 题目详情
计算:
(1)16-0.75
(2)0.064 -
1
3

(3)(
1
4
 -
1
2
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:根据指数幂的运算法则即可得到结论.
解答: 解:(1)16-0.75=(24-0.75=2-3=
1
8

(2)0.064 -
1
3
=0.43×(-
1
3
)
=0.4-1
=
10
4
=
5
2

(3)(
1
4
 -
1
2
=4
1
2
=
4
=2
点评:本题主要考查指数幂的基本运算,根据指数幂的运算法则是解决本题的关键.比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

OA
=
e1
OB
=
e2
,若
e1
e2
不平行,点P在线段AB上|AP|=2|PB|,如图所示,则
OP
=(  )
A、
1
3
e1
-
2
3
e2
B、
2
3
e1
+
1
3
e2
C、
1
3
e1
+
2
3
e2
D、
2
3
e1
-
1
3
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,(n+1)an=(n-1)an-1,Sn是前n项和,求
lim
n→+∞
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x-1),g(x)=lg(x2+1)
(1)求f(x)和g(x)的定义域;
(2)判断g(x)奇偶性,并证明你的结论;
(3)判断f(x)在其定义域上的单调性?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

空间给定不共面的A、B、C、D四个点,其中任意两点的距离都不相同,考虑具有如下性质的平面α:A、B、C、D中有三个点到α的距离相同,另外一个点到α的距离是前三个点到α的距离的2倍,这样的平面的个数是(  )
A、15B、23C、26D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)定义域为R,且对定义域内的一切实数x,y都有f(x+y)=f(x)+f(y),又当x>0时,有f(x)<0,且f(1)=-
1
2
,则f(x)在区间[-2,6]上的最大值与最小值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D(D为定义域)图象上的点到坐标原点的距离为函数的y=f(x),x∈D的模.若模存在最大值,则此最大值称之为函数y=f(x),x∈D的长距;若模存在最小值,则此最小值称之为函数y=f(x),x∈D的短距.
(1)分别判断函数f1(x)=
1
x
与f2(x)=
-x2-4x+5
是否存在长距与短距,若存在,请求出;
(2)对于任意x∈[1,2]是否存在实数a,使得函数f(x)=
2x|x-a|
的短距不小于2,若存在,请求出a的取值范围;不存在,则说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)求a1的值,并证明数列{
an
2n
}是等差数列;
(2)设bn=log2
an
n+1
,数列{
1
bn
}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有B3n-Bn
m
20
成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x与y呈相关关系,且由观测数据得到的样本数据散点图如图所示,则由该观测数据算得的回归方程可能是(  )
A、
?
y
=-1.314x+1.520
B、
?
y
=1.314x+1.520
C、
?
y
=1.314x-1.520
D、
?
y
=-1.314x-1.520

查看答案和解析>>

同步练习册答案