精英家教网 > 高中数学 > 题目详情

已知各项均为正数的数列{a}满足a=2a+aa,且a+a=2a+4,其中n∈N.

(Ⅰ)若b=,求数列{b}的通项公式;

(Ⅱ)证明:++…+>(n≥2).

 

【答案】

(1)b=(n∈N

(2)构造函数借助于函数的最值来证明不等式。

【解析】

试题分析:解:(Ⅰ)因为a=2a+aa,即(a+a)(2a-a)=0.            1分

又a>0,所以有2a-a=0,即2a=a

所以数列是公比为2的等比数列,              3分

,解得

从而,数列{a}的通项公式为a=2(n∈N),即:b=(n∈N). 5分

(Ⅱ)构造函数f(x)=(b-x)(x>0),

则f′(x)=+=

当0<x<b时,f′(x)>0,x>b时,f′(x)<0,

所以f(x)的最大值是f(b)=,所以f(x)≤.            7分

(b-x)(x>0,i=1,2,3…n),取“=”的条件是x=b(i=1,2,3…n),

所以++…+>(b+b+…+b-nx), 9分

令x=,则++…+>

所以++…+>,      11分

++…+>(n≥2).                12分

考点:数列与导数、不等式

点评:解决的关键是能利用等比数列来求解通项公式,同时能结合导数来拍脑袋函数单调性,以及求解函数的最值,同时证明不等式,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较数学公式数学公式的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:青岛二模 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》、《第3章 不等式》2010年单元测试卷(陈经纶中学)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012年高考复习方案配套课标版月考数学试卷(二)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案