精英家教网 > 高中数学 > 题目详情
如图,线段AB过y轴负半轴上一点M(0,a),A、B两点到y轴距离的差为2k.
(Ⅰ)若AB所在的直线的斜率为k(k≠0),求以y轴为对称轴,且过A、O、B三点的抛物线的方程;
(Ⅱ)设(1)中所确定的抛物线为C,点M是C的焦点,若直线AB的倾斜角为60°,又点P在抛物线C上由A到B运动,试求△PAB面积的最大值.

【答案】分析:(1)依题意设所求的抛物线方程为x2=-2py(p>0),直线AB的方程为y=kx+a,由得x2+2pkx+2pa=0
设A(x1,y1),B(x2,y2)(x1<0,x2>0,y1<0,y2<0),x1+x2=-2pk,若|x1|-|x2|=2k可求p
(2)解法1:可得直线AB的方程为,解方程组可求点A,B,从而可求AB,设点P(m,n),依题意知,且,根据点P到直线AB的距离=可求面积的最大值
解法2:直线AB的方程为,由,x1x2=-1,
以下同法一
解答:(1)解:依题意设所求的抛物线方程为x2=-2py(p>0),----------(1分)
∵直线AB的斜率为k且过点M(0,a)∴直线AB的方程为y=kx+a
得x2+2pkx+2pa=0----------①------------------(3分)
设A(x1,y1),B(x2,y2)(x1<0,x2>0,y1<0,y2<0)
则x1,x2是方程①的两个实根
∴x1+x2=-2pk,若|x1|-|x2|=2k
则-x1-x2=2k,-2pk=-2k∴p=1---------------------------(5分)
若|x2|-|x1|=2k则x1+x2=-2pk=2k∴p=-1与p>0矛盾----(6分)
∴该抛物线的方程为x2=-2y.-------(7分)
(2)解法1:抛物线x2=-2y的焦点为()即M点坐标为(
直线AB的斜率
∴直线AB的方程为,-----------------(8分)
解方程组
即点A,B-------------------(10分)

设点P(m,n),依题意知,且
则点P到直线AB的距离==
时,dmax=1,--------------------------------(13分)
这时=.-----------------------(15分)
解法2:抛物线x2=-2y的焦点为()即M点坐标为(
直线AB的斜率
∴直线AB的方程为
,x1x2=-1,
=[以下同上]
点评:本题主要考查了利用抛物线的性质求解抛物线的方程,直线与抛物线的位置关系的应用,点到直线的距离公式的应用,利用二次函数的性质求解函数的最值等知识的综合应用,要注意方程的思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,线段AB过y轴上一点N(0,m),AB所在直线的斜率为k(k≠0),两端点A,B到y轴的距离之差为4k.
(1)求出以y轴为对称轴,过A,O,B三点的抛物线方程;
(2)过抛物线的焦点F作动弦CD,过C,D两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出
FC
FD
FM
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•揭阳二模)如图,线段AB过y轴负半轴上一点M(0,a),A、B两点到y轴距离的差为2k.
(Ⅰ)若AB所在的直线的斜率为k(k≠0),求以y轴为对称轴,且过A、O、B三点的抛物线的方程;
(Ⅱ)设(1)中所确定的抛物线为C,点M是C的焦点,若直线AB的倾斜角为60°,又点P在抛物线C上由A到B运动,试求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:湖北省模拟题 题型:解答题

如图,线段AB过y轴上一点 N(0,m),AB所在直线的斜率为k(k≠0),两端点A,B到y 轴的距离之差为4k。
(1)求以y轴为对称轴,过A,O,B三点的抛物线方程;
(2)过抛物线的焦点F作动弦CD,过C,D两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,线段AB过y轴上一点N(0,m),AB所在直线的斜率为k(k≠0),两端点A、B到y轴的距离之差为4k.

(Ⅰ)求出以y轴为对称轴,过A、O、B三点的抛物线方程;

(Ⅱ)过抛物线的焦点F作动弦CD,过C、D两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出的值.

 

查看答案和解析>>

同步练习册答案