精英家教网 > 高中数学 > 题目详情
不等式选讲
(1)解不等式|2x-1|<|x|+1
(2)已知2x+3y+4z=10,求x2+3y2+z2的最小值.
分析:(1)根据绝对值的几何意义,分类讨论,求出不等式的解集,再求并集即可;
(2)由柯西不等式可得(x2+3y2+z2)(22+(
3
)2+42)≥(2x+3y+4z)2
,利用条件,即可求得x2+3y2+z2的最小值.
解答:解:(1)当x>
1
2
时,2x-1<x+1,x<2,此时,
1
2
<x<2

0≤x≤
1
2
时,1-2x<x+1,x>0,此时,0<x≤
1
2

当x<0时,1-2x<-x+1,x>0,此时,无解
综上可得,不等式的解集为{x|0<x<2}
(2)由柯西不等式可得(x2+3y2+z2)(22+(
3
)2+42)≥(2x+3y+4z)2

x2+3y2+z2
100
23

当且仅当
x
2
=
3
y
3
=
z
4
时取等号,
x=
20
23
,y=
10
23
,z=
40
23
时取等号,x2+3y2+z2的最小值为
100
23
点评:本题考查解不等式,考查柯西不等式的运用,分类讨论,灵活运用柯西不等式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做.则按所做的第一题评阅计分)
A.(选修4-4坐标系与参数方程) 已知圆C的圆心为(6,
π
2
),半径为5,直线θ=a(
π
2
≤θ<π,ρ∈R)
被圆截得的弦长为8,则a=
 

B.(选修4-5 不等式选讲)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是
 

C.(选修4-1 几何证明选讲),AB为圆O的直径,弦AC.BD交于点P,若AB=3,CD=1,则sin∠APD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设函数f(x)=|2x-1|+|x+2|.
(1)解不等式f(x)>3;
(2)若关于x的不等式f(x)≤|2a-1|的解集不是空集,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲设函数f(x)=|2-2x|+|x+3|.
(1)解不等式f(x)>6;
(2)若关于x的不等式f(x)≤|2a-1|的解集不是空集,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5,不等式选讲
己知函数f(x)=|2x+1|+|2x-3|
(I)若关于x的不等式f(x)<|1-2a|的解集不是空集,求实数a的取值范围;
(Ⅱ)若关于t的一元二次方程t2-2
6
t+f(m)=0
有实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案