精英家教网 > 高中数学 > 题目详情

已知函数数学公式,求f(f(-3))的值.

解:∵-3是奇数,
∴f(-3)=0,
∴f(f(-3))=f(0)=1.
分析:由题设条件知f(f(-3))=f(0),计算可得答案.
点评:本题考查分段函数的性质和应用,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx+1.
(1)设常数ω>0,若y=f(ωx),在区间[-
π
2
3
]上是增函数,求ω的取值范围;
(2)当x∈[-
π
6
3
]时,g(x)=f(x)+m恰有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y)且当x>0时,f(x)<0,f(1)=-1
①判断f(x)奇偶性
②求证:f(x)在R上是减函数.
③求f(x)在[-2,4]上的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知函数f(x)=ax3+
1
2
x2-2x+c
,在点(-
1
3
,f(-
1
3
))
的切线与直线y=-2x+1平行,且函数的图象过原点;
(1)求f(x)的解析式及极值;
(2)若g(x)=
1
2
bx2-x+d
,是否存在实数b,使得函数g(x)与f(x)的两图象恒有三个不同的交点,且其中一个交点的横坐标为-1?若存在,求出实数b的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],且同时满足:①f(1)=3;②f(x)≥2对一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2
(1)求f(0)的值
(2)设s,t∈[0,1],且s<t,求证:f(s)≤f(t)
(3)试比较f(
1
2n
)
1
2n
+2
(n∈N)的大小;
(4)某同学发现,当x=
1
2n
(n∈N)时,有f(x)<2x+2,由此他提出猜想:对一切x∈(0,1],都有f(x)<2x+2,请你判断此猜想是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,g(x)=x-a
x

(1)若a∈R,求函数f(x)的极值;
(2)若函数f(x)在(1,2)上是增函数,g(x)在(0,1)上为减函数,求f(x),g(x)的表达式;
(3)对于(2)中的f(x),g(x),求证:当x>0时,方程f(x)=g(x)+2有唯-解.

查看答案和解析>>

同步练习册答案