精英家教网 > 高中数学 > 题目详情

【题目】已知函数

Ⅰ)当时,求曲线在点处的切线方程.

Ⅱ)当时,若曲线上的点都在不等式组所表示的平面区域内,试求的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:

)根据导数的几何意义求出切线方程即可。)将问题转化为:当时,不等式恒成立。构造函数设 ,只需证明即可。因此将问题转化为求函数在区间上的最大值和最小值即可。

试题解析:

(Ⅰ) 当时,

∴曲线在点处的切线方程为

(Ⅱ)“当时,曲线上的点都在不等式组所表示的平面区域内,”

等价于“当时, 恒成立。”

①当,即时,

时, 单调递减,

根据题意有,解得.

②当,即时,

则当 单调递增,

单调递减.

不符合题意.

③当,即时,注意到,显然不合题意.

综上所述,实数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,证明:对任意的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图

(1)依据数据的折线图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.

附:相关系数公式,参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点两点

()求椭圆的方程及离心率;

(Ⅱ)设为第三象限内一点且在椭圆上,椭圆y轴正半轴交于B点,直线轴交于点,直线轴交于点,求证:四边形的面积为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标中,圆,圆

()在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示)

()求圆的公共弦的参数方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知向量,设,向量

(1)若,求向量的夹角;

(2)若 对任意实数都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数, .

(Ⅰ)若,求m的取值范围;

(Ⅱ)若上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求曲线在点处的切线方程;

2)若在区间上恒成立,求a的最小值.

查看答案和解析>>

同步练习册答案