精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)设.

①若,曲线处的切线过点,求的值;

②若,求在区间上的最大值.

(2)设 两处取得极值,求证: 不同时成立.

【答案】(1).②的最大值为0.(2)见解析.

【解析】(1)根据题意,在①中,利用导数的几何意义求出切线方程,再将点代入即求出的值,在②中,通过函数的导数来研究其单调性,并求出其极值,再比较端点值,从而求出最大值;(2)由题意可采用反证法进行证明,假设问题成立,再利用函数的导数来判断函数的单调性,证明其结果与假设产生矛盾,从而问题可得证.

试题解析:(1)当时, .

①若,则

从而

故曲线处的切线方程为 .

将点代入上式并整理得

解得.

②若,则令,解得.

(ⅰ)若,则当时,

所以为区间上的增函数,

从而的最大值为.

(ii)若,列表:

所以的最大值为.

综上, 的最大值为0.

(2)假设存在实数,使得同时成立.

不妨设,则.

因为 的两个极值点,

所以 .

因为,所以当时,

为区间上的减函数,

从而,这与矛盾,

故假设不成立.

既不存在实数 ,使得 同时成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为).

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)曲线上有3个点到曲线的距离等于1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(Ⅱ)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).

(1)求关于的函数关系式;

(2)若,求当下潜速度取什么值时,总用氧量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从集合中,抽取三个不同的元素构成子集.

(1)求对任意的满足的概率;

(2)若成等差数列,设其公差为,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知城和城相距,现计划以为直径的半圆上选择一点(不与点 重合)建造垃圾处理厂.垃圾处理厂对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为对城与城的影响度之和.记点到的距离为,建在处的垃圾处理厂对城和城的总影响度为.统计调查表明:垃圾处理厂对城的影响度与所选地点到城的距离的平方成反比例关系,比例系数为4;对城的影响度与所选地点到城的距离的平方成反比例关系,比例系数为.当垃圾处理厂建在的中点时,对城和城的总影响度为0.065.

(1)将表示成的函数.

(2)讨论(1)中函数的单调性,并判断在上是否存在一点,使建在此处的垃圾处理厂对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某汽车品牌一个月内被消费者投诉的次数用表示,据统计,随机变量的概率分布如下:

(1)求的值;

(2)假设一月与二月被消费者投诉的次数互不影响,求该汽车品牌在这两个月内被消费者投诉次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数).它与曲线交于两点.

(1)求的长;

(2)在以为极点, 轴的正半轴为极轴建立极坐标系,设点的极坐标为,求点到线段中点的距离.

查看答案和解析>>

同步练习册答案