精英家教网 > 高中数学 > 题目详情

【题目】如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=( )

A.0
B.5
C.45
D.90

【答案】C
【解析】解:第一次执行循环体,r=90,m=135,n=90,不满足退出循环的条件;
第二次执行循环体,r=0,m=45,n=0,满足退出循环的条件;
故输出的m值为45,
故选:C
【考点精析】认真审题,首先需要了解程序框图(程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了增强环保意识,某社团从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:

优秀

非优秀

总计

男生

40

20

60

女生

20

30

50

总计

60

50

110

(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;

(2)为参加市举办的环保知识竞赛,学校举办预选赛,现在环保测试优秀的同学中选3人参加预选赛,已知在环保测试中优秀的同学通过预选赛的概率为,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=( )

A.0
B.5
C.45
D.90

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题,其中正确的命题是____.(填出所有正确命题的序号)

x=y=sin2x+)的一条对称轴;

y=esin2x是以π为周期在(0)上的增函数;

③函数y=3sin2x+)的图象可由y=3sin2x的图象向左平移个单位得到.

④设x1x2是关于x的方程|logax|=ka0a≠1k0)的两根,则x1x2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6.

(1)求证:BD平面PAC; (2)求二面角P-BD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解本校学生在校小卖部的月消费情况,随机抽取了60名学生进行统计.得到如下样本频数分布表:

月消费金额(单位:元)

人数

30

6

9

10

3

2

记月消费金额不低于300元为“高消费”,已知在样本中随机抽取1人,抽到是男生“高消费”的概率为.

(1)从月消费金额不低于400元的学生中随机抽取2人,求至少有1人月消费金额不低于500元的概率;

(2)请将下面的列联表补充完整,并判断是否有的把握认为“高消费”与“男女性别”有关,说明理由.

高消费

非高消费

合计

男生

女生

25

合计

60

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆轴交于 两点,且

(1)求椭圆的方程;

(2)设点是椭圆上的一个动点,且直线与直线分别交于 两点.是否存在点使得以 为直径的圆经过点?若存在,求出点的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

(1)求图中x的值;

(2)求这组数据的平均数和中位数;

(3)已知满意度评分值在内的男生数与女生数的比为,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.的中点,的中点,过点的平面交.

(1)求证:平面

(2)若时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案