【题目】如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=( )
A.0
B.5
C.45
D.90
科目:高中数学 来源: 题型:
【题目】为了增强环保意识,某社团从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:
优秀 | 非优秀 | 总计 | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(2)为参加市举办的环保知识竞赛,学校举办预选赛,现在环保测试优秀的同学中选3人参加预选赛,已知在环保测试中优秀的同学通过预选赛的概率为,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.
附:=
0.500 | 0.400 | 0.100 | 0.010 | 0.001 | |
0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=( )
A.0
B.5
C.45
D.90
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题,其中正确的命题是____.(填出所有正确命题的序号)
①x=是y=sin(2x+)的一条对称轴;
②y=esin2x是以π为周期在(0,)上的增函数;
③函数y=3sin(2x+)的图象可由y=3sin2x的图象向左平移个单位得到.
④设x1、x2是关于x的方程|logax|=k(a>0,a≠1,k>0)的两根,则x1x2=1;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6.
(1)求证:BD⊥平面PAC; (2)求二面角P-BD-A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解本校学生在校小卖部的月消费情况,随机抽取了60名学生进行统计.得到如下样本频数分布表:
月消费金额(单位:元) | ||||||
人数 | 30 | 6 | 9 | 10 | 3 | 2 |
记月消费金额不低于300元为“高消费”,已知在样本中随机抽取1人,抽到是男生“高消费”的概率为.
(1)从月消费金额不低于400元的学生中随机抽取2人,求至少有1人月消费金额不低于500元的概率;
(2)请将下面的列联表补充完整,并判断是否有的把握认为“高消费”与“男女性别”有关,说明理由.
高消费 | 非高消费 | 合计 | |
男生 | |||
女生 | 25 | ||
合计 | 60 |
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆与轴交于 两点,且.
(1)求椭圆的方程;
(2)设点是椭圆上的一个动点,且直线与直线分别交于 两点.是否存在点使得以 为直径的圆经过点?若存在,求出点的横坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照,,,分成5组,制成如图所示频率分直方图.
(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在内的男生数与女生数的比为,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.
(1)求证:平面;
(2)若时,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com