精英家教网 > 高中数学 > 题目详情
11.如图,某船在海上航行中遇险发出呼救信号,我海上救生艇在A处获悉后,立即测出该船在方位角45°方向,相距10海里的C处,还测得该船正沿方位角105°的方向以每小时9海里的速度行驶,救生艇立即以每小时21海里的速度前往营救,则救生艇与呼救艇与呼救船在B处相遇所需的最短时间为$\frac{2}{3}$小时.

分析 设所需时间为t小时,在点B处相遇则可求得AB和BC,进而利用余弦定理建立等式求得t.

解答 解:设所需时间为t小时,在点B处相遇在△ABC中,
∠ACB=120°,AC=100,AB=21t,BC=9t,由余弦定理:
(21t)2=102+(9t)2-2×10×9t×cos120°
整理得:36t2-9t-10=0    
解得:t=$\frac{2}{3}$或-$\frac{5}{12}$(舍负)
故救生艇与呼救船在B处相遇所需的最短时间为$\frac{2}{3}$.
故答案为$\frac{2}{3}$.

点评 本题主要考查了解三角形的实际应用.解题的关键是利用了余弦定理,利用已知的边和角建立方程求得时间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-A1B1C1D1中.
(1)求D1B与平面ABCD所成的角的正弦;
(2)求二面角B1-AC-B的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足$\left\{\begin{array}{l}x+y≤2\\ 2x+y≥0\\ 3x-y-2≤0\end{array}\right.$,则$\frac{y}{1-x}$的取值范围为(  )
A.$({-∞,-\frac{4}{3}}]$B.$({-∞,\frac{3}{4}})$C.$[{-\frac{3}{4},+∞})$D.$[{-\frac{4}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足约束条件$\left\{\begin{array}{l}{|x-2y+2|≤2}\\{|x+3y-8|≤2}\end{array}\right.$,则z=x+2y的最大值为(  )
A.4B.8C.$\frac{24}{5}$D.$\frac{36}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的等比数列{an}的前n项和为Sn,若a5=2a3+a4,且S5=62
(1)求数列{an}的通项公式
(2)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示的程序框图中,输出的S的值为$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{{sin({A+B})}}{a+b}=\frac{sinA-sinB}{a-c}$,b=3.
(Ⅰ)求角B;
(Ⅱ)若$cosA=\frac{{\sqrt{6}}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.i为虚数单位,复数$\frac{2i}{1-i}$在复平面内对应的点到原点的距离为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{1}{16}{x}^{2}(0≤x≤2)}\\{(\frac{1}{2})^{x}(x>2)}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有5个不同实数根,则实数a的取值范围是(  )
A.(-$\frac{1}{4}$,0)B.($-\frac{1}{2}$,-$\frac{1}{4}$)C.($-\frac{1}{2}$,$-\frac{1}{4}$)∪($-\frac{1}{4}$,-$\frac{1}{8}$)D.(-$\frac{1}{2}$,$-\frac{1}{8}$)

查看答案和解析>>

同步练习册答案