精英家教网 > 高中数学 > 题目详情

在等比数列{an}中,a1=2,a4=16
(1)求数列{an}的通项公式;
(2)令数学公式,n∈N*,求数列{bn}的前n项和Sn

解:(1)设等比数列{an}的公比为q依题意a1=2,a4=16,得
∴q3=8,q=2,
∴an=2n
(2)由(1)得log2an=n,log2a n+1=n+1,
bn==-
∴Sn=b1+b2+…+bn=(1-)+(+)+…+(-)=1==
分析:(1)由“a1=2,a4=16”求得公比q再用通项公式求得通项.
(2)先将 ==-转化,再用裂项相消法求其前n项和Tn
点评:本题主要考查等比数列的通项公式及前n项和公式及其应用,求和的常用方法有:倒序相加法,错位相减法,裂项相消法,分组求和等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案