精英家教网 > 高中数学 > 题目详情
△ABC中,角A,B,C所对的边分别为a,b,c,若C=
π
3
,3a=2c=6,则b的值为
1+
6
1+
6
分析:根据题意,算出a=2且c=3,再根据余弦定理c2=a2+b2-2abcosC的式子,建立关于b的方程,解之可得边b的值.
解答:解:∵3a=2c=6,∴a=2,c=3.
又∵C=
π
3

∴由余弦定理c2=a2+b2-2abcosC,得9=4+b2-2×2×bcos
π
3

化简得b2-2b-5=0,解之得b=1±
6
(舍负).
∴边b的值为1+
6

故答案为:1+
6
点评:本题给出三角形的两条边和其中一边的对角,求第三边之长.着重考查了利用余弦定理解三角形的知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面积S△ABC=3,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A、B、C所对的边长分别为a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大小;
(2)若△ABC面积为
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步练习册答案