精英家教网 > 高中数学 > 题目详情

【题目】某校高三共有800名学生,为了解学生3月月考生物测试情况,根据男女学生人数差异较大,从中随机抽取了200名学生,记录他们的分数,并整理得如图频率分布直方图.

(1)若成绩不低于60分的为及格,成绩不低于80分的为优秀,试估计总体中合格的有多少人?优秀的有多少人?

(2)已知样本中有一半的女生分数不小于80,且样本中不低于80分的男女生人数之比2:3,试估计总体中男生和女生人数的比例.

【答案】(1)及格的有640人,优秀的有160人.(2)

【解析】试题分析:1根据频率分布直方图得到成绩及格和成绩优秀的频率,根据频数=频率×样本容量”得的人数;(2根据频率分布直方图得到样本中不低于80分的女生人数为40人,所以样本中分数不小于80的女生人数为,从而得到样本中的女生人数为,男生人数为,然后根据分层抽样的原理可得男生和女生人数的估计比例。

试题解析

(1)根据频率分布直方图可知,

总体中及格的人数估计为

总体中优秀的人数估计为

所以估计总体中及格的有640人,优秀的有160人. 

(2)由题意可知,样本中分数不小于80的学生人数为

所以样本中分数不小于80的女生人数为

所以样本中的女生人数为,男生人数为

男生和女生人数的比例为

所以根据分层抽样原理,总体中男生和女生人数的比例估计为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上到达,乙船将于早上到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记 都是之间的均匀随机数,用计算机做了100次试验,得到的结果有12次满足,有6次满足

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线 上,与直线 相切,且截直线 所得弦长为6

(Ⅰ)求圆的方程

(Ⅱ)过点是否存在直线,使以被圆截得弦为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数的对称轴方程;

(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角ABC的对边,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数的对称轴方程;

(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角ABC的对边,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的解析式满足
(1)求函数f(x)的解析式;
(2)当a=1时,试判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;
(3)当a=1时,记函数 ,求函数g(x)在区间 上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )

A. 甲应付 B. 乙应付

C. 丙应付 D. 三者中甲付的钱最多,丙付的钱最少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆相交于不同的两点

1求线段的中点的轨迹的方程;

2是否存在实数使得直线与曲线只有一个交点?若存在求出的取值范围;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在 两家餐厅用餐的满意度,从在 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以10为组距分成6组: ,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:

(Ⅰ)在抽样的100人中,求对餐厅评分低于30的人数;

(Ⅱ)从对餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;

(Ⅲ)如果从 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

同步练习册答案