精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=|log2|1-x||,若函数g(x)=f2(x)+af(x)+2b有6个不同的零点,则这6个零点之和为(  )
A.7B.6C.$\frac{11}{2}$D.$\frac{9}{2}$

分析 先作出函数f(x)=|log2|x-1||的图象,令t=f(x),方程[f(x)]2+af(x)+2b=0转化为:t2+at+2b=0,再方程[f(x)]2+af(x)+2b=0有6个不同的实数解,运用图象关于直线x=1对称,这6个解两两关于直线x=1对称,计算即可得到所求和.

解答 解:作出函数f(x)=|log2|x-1||的图象
可得图象关于直线x=1对称,
∵函数g(x)=f2(x)+af(x)+2b有6个不同的零点,
即方程[f(x)]2+af(x)+2b=0有6个不同的实数解,
可得这6个解两两关于直线x=1对称,
可得它们的和为2×3=6.
故选:B.

点评 本题考查函数的零点个数问题的解法,注意运用函数的对称性,考查数形结合思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足约束条件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$则$\frac{y}{x}$的取值范围是  (  )
A.$[{\frac{2}{3},2}]$B.$[{\frac{1}{2},\frac{3}{2}}]$C.$[{\frac{3}{2},2}]$D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若不等式|x-t|<1成立的必要条件是1<x≤4,则实数t的取值范围是(  )
A.[2,3]B.(2,3]C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线C:y2=2px(p>0)的焦点为F,过F的直线交抛物线C于A,B两点,以线段AB为直径的圆与抛物线C的准线切于$M(-\frac{p}{2},3)$,且△AOB的面积为$\sqrt{13}$,则抛物线C的方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}f(x+1),x<4\\{2^x},x≥4\end{array}\right.$,则f(2+log23)=(  )
A.8B.12C.16D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2017年某市开展了“寻找身边的好老师”活动,市六中积极行动,认真落实,通过微信关注评选“身边的好老师”,并对选出的班主任工作年限不同的五位“好老师”的班主任的工作年限和被关注数量进行了统计,得到如下数据:
班主任工作年限x(单位:年)4681012
被关注数量y(单位:百人)1020406050
(1)若”好老师”的被关注数量y与其班主任的工作年限x满足线性回归方程,试求回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并就此分析:“好老师”的班主任工作年限为15年时被关注的数量;
(2)若用$\frac{y_i}{x_i}$(i=1,2,3,4,5)表示统计数据时被关注数量的“即时均值”(四舍五入到整数),从“即时均值”中任选2组,求这2组数据之和小于8的概率.(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={x|x>-1,x∈R},集合B={x|x<2,x∈R},则A∩B=(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,2cos2A+3=4cosA.
(1)求角A的大小;
(2)若a=2,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某手机厂商推出一款6寸大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(1)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);

(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求两名用户中评分都小于90分的概率.

查看答案和解析>>

同步练习册答案