精英家教网 > 高中数学 > 题目详情
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2.
(1)求证:SA⊥CD;
(2)求异面直线SB与CD所成角的大小.
(1)∵SD⊥平面ABCD,CD⊆平面ABCD,∴CD⊥SD,
又∵四边形ABCD是正方形,∴CD⊥AD,
又SD∩AD=D,∴CD⊥平面SDA,
又∵SA⊆平面SDA,∴SA⊥CD
(2)∵四边形ABCD是正方形,∴AB‖CD,
∴∠SBA或其补角是异面直线SB与CD所成角,
由(1)知BA⊥平面SDA,∴△SAB是直角三角形
∴tan∠SBA=
SA
AD
=
2
2
2
=
2

∴∠SBA=arctan
2

故异面直线SB与CD所成角的大小为arctan
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

三棱柱ABC-A1B1
C1
中,AA1与AC、AB所成角均为60°,∠BAC=90°,且AB=AC=AA1,则A1B与AC1所成角的余弦值为(  )
A.1B.-1C.
3
3
D.-
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正三棱柱ABC-A1B1C1中,若AB=
2
BB1
,则AB1与C1B所成的角的大小______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A,B,C,D为空间四点,△ABC是等腰三角形,且∠ACB=90°,△ADB是等边三角形.则AB与CD所成角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD中,M,N分别是AB和CD的中点,AD=BC=6,MN=3
2
,则AD和BC所成的角是(  )
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,ADBC,AD⊥AB,AB=
2
.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:
(i)EFA1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,∠BAD=90°,ADBC,AB=BC=a,AD=2a,PD与底面成30°角,BE⊥PD于E,求直线BE与平面PAD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四面体ABCD的棱长为a,点O是△BCD的中心,点M是CD中点.
(1)求点A到面BCD的距离;
(2)求AB与面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD,PA⊥底面ABCD,ABCD,AB⊥AD,AB=AD=
1
2
CD=2,PA=2,M,E,F分别是PA,PC,PD的中点.
(1)证明:EF平面PAB;
(2)证明:PD⊥平面ABEF;
(3)求直线ME与平面ABEF所成角的正弦值.

查看答案和解析>>

同步练习册答案