精英家教网 > 高中数学 > 题目详情

【题目】预计某地区明年从年初开始的前 个月内,对某种商品的需求总量 (万件)近似满足: ,且
(1)写出明年第 个月的需求量 (万件)与月份 的函数关系式,并求出哪个月份的需求量超过 万件;
(2)如果将该商品每月都投放到该地区 万件(不包含积压商品),要保证每月都满足供应, 应至少为多少万件?(积压商品转入下月继续销售)

【答案】
(1) 时, (万件)

当 时,

且 .

由 即

化简得 ,解得 .

又 , .

答:第 月份的需求量超过 万件.


(2)保证每月都满足供应,则 对于 , 恒成立

时 取最大值

答:每月至少应投放 万件.


【解析】分析:(1)利用 导出 的解析式,再解不等式 . (2)关键列出关系式 对于 恒成立,即 , , ,都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(

A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中 ),且函数的图象在点处的切线与函数的图象在点处的切线重合.

(1)求实数 的值;

(2)记函数,是否存在最小的正常数,使得当时,对于任意正实数,不等式恒成立?给出你的结论,并说明结论的合理性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=n2﹣n,数列{bn}的前n项和Tn=4﹣bn
(1)求数列{an}和{bn}的通项公式;
(2)设cn= anbn , 求数列{cn}的前n项和Rn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
(1)求△ABC的周长;
(2)求cos(A﹣C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.

1)求证:

2)若平面,求二面角的大小.

3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当 时,不等式 恒成立,则实数a的取值范围是( )
A.[-5,-3]
B.[-6,1]
C.[-6,-2]
D.[-4,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中, 的中点, 的中点.

(1)求证:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线和定点 是此曲线的左、右焦点,以原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求直线的极坐标方程;

(2)经过点且与直线垂直的直线交此圆锥曲线于两点,求的值.

查看答案和解析>>

同步练习册答案