精英家教网 > 高中数学 > 题目详情
定义函数y=f(x):对于任意整数m,当实数x时,有f(x)=m.
(Ⅰ)设函数的定义域为D,画出函数f(x)在x∈D∩[0,4]上的图象;
(Ⅱ)若数列(n∈N*),记Sn=f(a1)+f(a2)+…+f(an),求Sn
(Ⅲ)若等比数列bn的首项是b1=1,公比为q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范围.
【答案】分析:(Ⅰ)根据函数y=f(x)的定义,求出函数在区间[0,4]上的解析式,即可画出函数的图象;
(Ⅱ)根据,可知2<an<6,求出f(an),在求和即可;
(Ⅲ)由f(b1)+f(b2)+f(b3)=4,且b1=1,得f(q)+f(q2)=3,分类讨论即可求得结果.
解答:解:(I)当x∈[0,)时,f(x)=0,
当x∈[)时,f(x)=1,
当x∈[)时,f(x)=2,
当x∈[)时,f(x)=3,
当x∈[,4]时,f(x)=4,
∴图象如图所示,
(II)由于,所以
因此
(III)由f(b1)+f(b2)+f(b3)=4,且b1=1,得f(q)+f(q2)=3,
当0<q≤1时,则q2≤q≤1,
所以f(q2)≤f(q)≤f(1)=1,
则f(q)+f(q2)≤2<3,不合题意;
当q>1时,则q2>q>1,
所以f(q2)≥f(q)≥f(1)=1.
又f(q)+f(q2)=3,
∴只可能是,即
解之得
点评:本题以新定义为载体,考查分段函数的解析式的求法和图象的画法,以及数列求和问题,考查利用知识分析解决问题的能力和运算能力,读懂题意是解题的关键,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,则称函数f(x)在D上的几何平均数为C.已知f(x)=2x,x∈[1,2],则函数f(x)=2x在[1,2]上的几何平均数为(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳三模)设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量
ON
OA
+(1-λ)
OB
,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|
MN
|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:
①A、B、N三点共线;
②直线MN的方向向量可以为
a
=(0,1);
③“函数y=5x2在[0,1]上可在标准1下线性近似”;
④“函数y=5x2在[0,1]上可在标准
5
4
下线性近似”.
其中所有正确结论的番号为
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区模拟)定义函数y=f(x),x∈D.若存在常数c,对任意x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)
2
=c
,则称函数f(x)在D上的算术平均数为c.已知f(x)=lnx,x∈[2,8],则f(x)=lnx在[2,8]上的算术平均数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•北京模拟)定义函数y=f(x):对于任意整数m,当实数x∈(m-
1
2
,m+
1
2
)
时,有f(x)=m.
(Ⅰ)设函数的定义域为D,画出函数f(x)在x∈D∩[0,4]上的图象;
(Ⅱ)若数列an=2+10(
2
5
)n
(n∈N*),记Sn=f(a1)+f(a2)+…+f(an),求Sn
(Ⅲ)若等比数列bn的首项是b1=1,公比为q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范围.

查看答案和解析>>

同步练习册答案