【题目】设F为双曲线 ﹣ =1(a>b>0)的右焦点,过点F的直线分别交两条渐近线于A,B两点,OA⊥AB,若2|AB|=|OA|+|OB|,则该双曲线的离心率为( )
A.
B.2
C.
D.
【答案】C
【解析】解:不妨设OA的倾斜角为锐角,
∵a>b>0,即0< <1,
∴渐近线l1的倾斜角为(0, ),
∴ = =e2﹣1<1,
∴1<e2<2,
∵2|AB|=|OA|+|OB|,OA⊥AB,
∴|AB|2=|OB|2﹣|OA|2
=(|OB|﹣|OA|)(|OB|+|OA|)=2(|OB|﹣|OA|)|AB|,
∴|AB|=2(|OB|﹣|OA|),
∴|OB|﹣|OA|= |AB|,
又|OA|+|OB|=2|AB|,
∴|OA|= |AB|,
∴在直角△OAB中,tan∠AOB= = ,
由对称性可知:OA的斜率为k=tan( ∠AOB),
∴ = ,∴2k2+3k﹣2=0,
∴k= (k=﹣2舍去);
∴ = ,∴ = =e2﹣1= ,
∴e2= ,
∴e= .
所以答案是:C.
科目:高中数学 来源: 题型:
【题目】如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里,问乙船每小时航行多少海里?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)指出f(x)的周期、振幅、初相、对称轴;
(3)此函数图象由y=sinx的图象怎样变换得到?(注:y轴上每一竖格长为1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:已知抛物线 C1:y2=2px (p>0),直线 l 与抛物线 C 相交于 A、B 两点,且当倾斜角为 60°的直线 l 经过抛物线 C1 的焦点 F 时,有|AB|= .
(Ⅰ)求抛物线 C 的方程;
(Ⅱ)已知圆 C2:(x﹣1)2+y2= ,是否存在倾斜角不为 90°的直线 l,使得线段 AB 被圆 C2 截成三等分?若存在,求出直线 l 的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A、B两点.
(1)设抛物线在A、B处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程.
(2)若直线l与椭圆 + =1的交点为C,D,问是否存在这样的直线l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式|x﹣a|<b的解集为{x|2<x<4}.
(Ⅰ)求实数a,b的值;
(Ⅱ)设实数x,y,z 满足 + + =1,求x,y,z的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,且a3=-6,a6=0.
(1)求{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农
民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如
图2的不完整的条形统计图.
图1 图2
根据以上统计图来判断以下说法错误的是
A. 2013年农民工人均月收入的增长率是
B. 2011年农民工人均月收入是元
C. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”
D. 2009年到2013年这五年中2013年农民工人均月收入最高
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com